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Background

 The scale of Deep 

Neural Network (DNN) 

is growing
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Source： Dario Amodei and Danny Hernandez, https://openai.com/blog/ai-and-compute/

The large-scale 

parallelization is one of 

the efficient way to 

accelerate training speed.

Complexity of Training 

Neural Networks

wider

gap
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History of training speed of DNN
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2012

2014

2015

2016

ILSVRC2012

• Barklay U. AlexNet

training in 5-6 days using 2 GPUs

ILSVRC2014

• google GoogleNet

training in a week using few GPUs

(estimation in their paper)

ILSVRC2015

• MICROSOFT ResNet

2018

2019

• Facebook

ResNet-50 Training in 1 hour using 256 GPUs

• PFN

Training in 15 Minutes using 1,024 GPUs

• Tencent

Training in 6.6 minute using 2,048 GPUs

• Google

Training in 1.8 minute using 1,024 TPUs

• Sony

Training in 2.0 minute using 3,456 GPUs

…

2017
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Our contribution ... speed up

 In 2015, our group in Fujitsu Laboratories began working on large-scale distributed 

training
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Year Hardware #GPUs DNN / Dataset Time Remarks

Feb, 2016 Tatara (Kyushu Univ.) 64 AlexNet / ImageNet -

June, 2016 TSUBAME 2.5 256 AlexNet / ImageNet - *1

Aug., 2018 ABCI ~4096 ResNet-50 / ImageNet (6.6 minute) The Accuracy didn’t reach 75%

April, 2019 ABCI 2048 ResNet-50 / ImageNet 74.7 seconds arXiv:1903.12650

June, 2019 ABCI 2048 ResNet-50 / ImageNet 70.4 seconds MLPerf v0.6

*1 SWoPP2016 「MPIを用いたDL処理高速化の提案」
- evaluated the Allreduce algorithm

- proposed running computation and communication processes in parallel

- reported how accuracy worsened with large mini batch sizes.
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History of training speed of DNN
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2012

2014

2015

2016

ILSVRC2012

• Barklay U. AlexNet

training in 5-6 days using 2 GPUs

ILSVRC2014

• google GoogleNet

training in a week using few GPUs

(estimation in their paper)

ILSVRC2015

• MICROSOFT ResNet

2018

2019

• Facebook

ResNet-50 Training in 1 hour using 256 GPUs

• PFN

Training in 15 Minutes using 1,024 GPUs

• Tencent

Training in 6.6 minute using 2,048 GPUs

• Google

Training in 1.8 minute using 1,024 TPUs

• Sony

Training in 2.0 minute using 3,456 GPUs

• MLPerf v0.6 (Our work)

Training in 1.2 minute using 2,048 GPUs

• Huawei

Training in 1.0 minute using 1,024 A910 

processors

2017
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Our contribution ... mini-batch size

 Facebook was able to increase the mini-batch size up to 8k using ideas such as 

warm-ups. However, increasing the batch size further would worsen accuracy
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Source: Accurate, Large Minibatch SGD: Training 

ImageNet in 1 Hour, P. Goyal (Facebook) et al, 2017

We achieved accuracy 

with up to 84k mini-batch 

using 2048 GPUs

2048 GPUs

larger mini-batch size
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Key points for distributed training

 Data Parallel Method Based on Synchronous-SGD using Allreduce

 Optimal mini-batch size

 Allreduce algorithms
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Data Parallel Method
 We have continued to accelerate training using a data parallel method based on 

synchronous-SGD using Allreduce
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mini-batch size

Training

Iteration
Backward

Forward

Number of Images for Training is 1,281,167 (ImageNet-1k)

Update

#0
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Data Parallel Method
 Since 2016, we have continued to accelerate training using a data parallel method 

based on synchronous-SGD using Allreduce
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mini-batch size

Training

Iteration Allreduce

Backward

Forward

Number of Images for Training is 1,281,167 (ImageNet-1k)

Update

#0 #1 #2 #3

Therefore, a single GPU will process less data 

when using a large number of GPUs for training.
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 The performance gets worse as the amount of data to process for each 

GPU decreases

10

100

Sp
ee

d
 [a

rb
. u

n
it

]

Number of GPUs

系列1
系列2
系列3
系列4
系列5

32 64 256

Number of images per GPU
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Optimal mini-batch size
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- TSUBAME2.5 system

- Tesla K20X (using 1GPU per node)

The performance gets worse as the amount of 

data to process for each GPU decreases
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 We selected the optimal mini batch size for enough accuracy
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Weak scale
Increases the amount of images 
per iteration in proportion to the 
number of accelerators
Pros; good scalability
Cons; accuracy down in a large 

mini batch

Optimal mini-batch size
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Strong scale
Execute the same process by 
dividing it with an accelerator
Pros; get the same result
Cons; Bad scalability

- Reduced parallelism of GPU
- Communication overhead- TSUBAME2.5 system

- Tesla K20X (using 1GPU per node)
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Comparison of Allreduce algorithms
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algorithm Data size to transfer #steps Remarks

Recursive 

Halving/Doubling

Ring

Double Tree
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Recursive Halving/Doubling Algorithm
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rank 0   

rank 1   

rank 2   

rank 3   

0

2

3

1

0+1

2+3

0+1+2+3

0+1+2+3

0+1+2+3

stepstep1 step2 step3 step4

algorithm
Data size

to transfer
#steps Remarks

Recursive 

Halving/Doubling

𝑁

2
~
𝑁

𝑚
2 × 𝑙𝑜𝑔2𝑚 We Implemented

※ N, m are the Data size and the number of ranks, respectively.
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Ring algorithm
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rank 0   
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rank 3   
step

1+22
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0+1+2+3 0+1+2+3

0+1+2+3

step1 step2 step3 step4 step5 step6

algorithm
Data size

to transfer
#steps Remarks

Ring
𝑁

𝑚
2 × (𝑚− 1)

NCCL 2.3

2D – Ring
𝑁

𝑚𝑥
,
𝑁

𝑚𝑦
2 × (𝑚𝑥 +𝑚𝑦 − 2)

※ N, m, mx, my are the Data size, the number of ranks, the x-ring size and y ring size, respectively
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Double Tree algorithm
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source: NCCL v2.4 comments

algorithm
Data size

to transfer
#steps Remarks

Double Tree
𝑁

2
2 × 𝑙𝑜𝑔2𝑚 NCCL 2.4

※ N, m are the Data size and the number of ranks, respectively.
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Comparison of Allreduce algorithms

algorithm Data size to transfer #steps Remarks

Recursive 

Halving/Doubling

𝑁

2
~
𝑁

𝑚
2 × 𝑙𝑜𝑔2𝑚 We Implemented

Ring
𝑁

𝑚

2 × (𝑚− 1)

NCCL 2.3

2D – Ring 2 × (𝑚𝑥 +𝑚𝑦 − 2)

Double Tree
𝑁

2
2 × 𝑙𝑜𝑔2𝑚 NCCL 2.4
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※ N, m, mx, my are the Data size, the number of ranks, the x-ring size and y ring size, respectively
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System: ABCI
Number of nodes: 128
Number of GPUs: 512

The data size regions often used 
by Allreduce of distributed training
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Evaluate the Allreduce algorithms
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Optimization Points

 Accelerate training speed

 Optimization of initialization and unnecessary processing

 Changes for MLPerf v0.6

Copy right 2019 FUJITSU LABORATORIES LIMITED19



Accelerate Training Speed

 Overlapping Allreduce communication with backward computation
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forward backward
overhead

update

Allreduce AllreduceAllreduceAllreduceAllreduce

Backward

Forward

Allreduce

Update

The processing speed increased to over 1.5 M images/sec. 

However we could not reach our goal for the overall training time.
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Optimization of initialization and unnecessary processes
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Initialization Training

Time

①generate common initial-weights using common random-seed in each GPU instead of 

broadcasting initial weights from one GPU

②Overlapping NCCL initialization with framework initialization

Validation

③Eliminating unnecessary processes after each epoch （0.1 ～ 0.2 sec. / epoch）

② ③ ③ ③①

1 epoch

Reduce overall training time by 45 seconds (120s → 75s)
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 In MLPerf v0.6 rules, the validation accuracy was increased from 74.9% to 75.9%. 

① Database for training

Changes when submitting MLPerf v0.6
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② Learning Rate scheduling

We tuned LR scheduling, and changed it to

follow MLPerf v0.6 rules

256 pixel
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(before Data augmentation)

Clopped image for April 1 result Original image for MLPerf v0.6
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Evaluation and results

 Hardware

 Software

 Results

• Validation Accuracy in training 

• Accuracy improvement

• Scalability
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Evaluation environment

Hardware

 compute nodes

• 4-GPUs / node

• 2-HCA / node

 IB Interconnect

• The intra-rack network has topology 

of full bi-section fat-tree

• The inter-rack network has topology 

of fat-tree with 1/3 over subscription
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ABCI compute node configuration

24



Evaluation environment

Software

 MXNet / Horovod

• Original source is NVIDIA tuned MXNet

• We customized and tuned

 Other libralies

• CUDA, cuDNN v7.5, NCCL v2.4

• OpenMPI

• GCC 7.3

• Python 3.6
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Result; Validation Accuracy in training
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We achieved 76% 

accuracy with 84k 

mini-batch using 

2k GPUs
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Result; Accuracy improvement
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Result; Scalability

 The number of computation images per GPU is the same (Weak scale)
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Parallel efficiency is 

77% on 2k GPUs 
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Conclusion

 We achieved 70 sec. training time (world record
†
) and 84K mini-batch size 

(world record
††

) of ResNet-50/ImageNet under MLPerf v0.6 rules
†††

 Using ABCI 512 compute nodes (2,048 GPUs)
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† Our investigation in March, 2019 †† Our investigation under the conditions of SGD and fixed mini-batch size in March, 2019

Mini-batch 
size(max)

Processor
DL

Software
Time

Validation
accuracy

Facebook 8,192 Tesla P100 × 256 Caffe2 1 hour 76.3 %

Google 16,384 full TPU Pod TensorFlow 30 min. 76.1 %

Preferred Networks 32,768 Tesla P100 × 1,024 Chainer 15 min. 74.9 %

Tencent 65,536 Tesla P40 × 2,048 TensorFlow 6.6 min. 75.8 %

Google 65,536 TPU v3 × 1,024 TensorFlow 1.8 min. 75.2 %

Sony 55,296 Tesla V100 × 3,456 NNL 2.0 min. 75.3 %

Fujitsu Labs. 86,016 Tesla V100 × 2,048 MXNet 1.17 min. 76.1 %

Huawei ? Ascend A910 × 1,024 MindSpore 0.997 min. >75.9%

††† Used closed Division rules, except for tuning six hyper parameters
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