

shaping tomorrow with you

8th ADAC Workshop

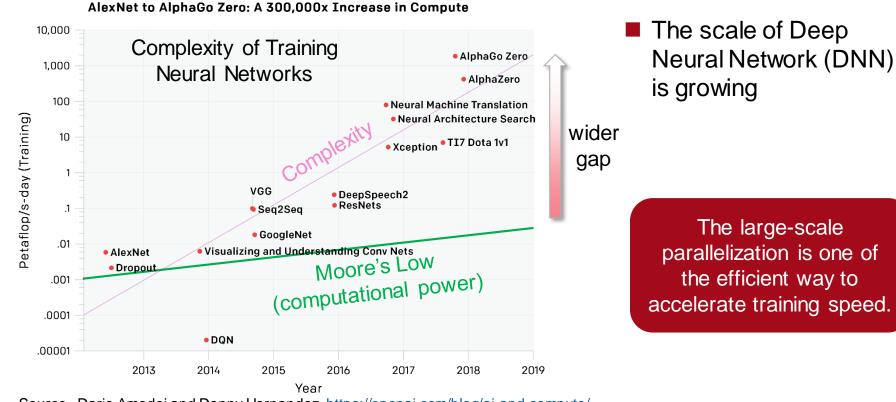
Yet Another Accelerated SGD: ResNet-50 Training in 70.4 sec.

October 30, 2019

Fujitsu Laboratories. LTD. senior researcher Masafumi Yamazaki

Background

FUJITSU



Source: Dario Amodei and Danny Hernandez, https://openai.com/blog/ai-and-compute/

Contents

1. Distributed Deep Learning

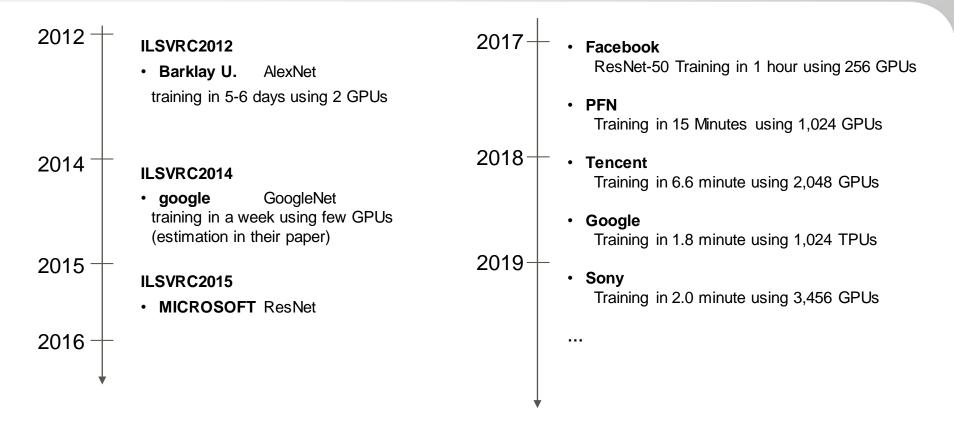
- History of DNN training speed challenges
- Our contributions
- 2. Key points for distributed training
 - DNN training using Data parallel Synchronous-SGD
 - Optimal mini-batch size
 - Allreduce algorithms

3. Optimization Points

- Backward/Allreduce parallelization
- Optimization of initialization and unnecessary processing
- Optimization for MLPerf v0.6 (The Rule was changed from v0.5)

4. Evaluation and results

History of training speed of DNN



Our contribution ... speed up

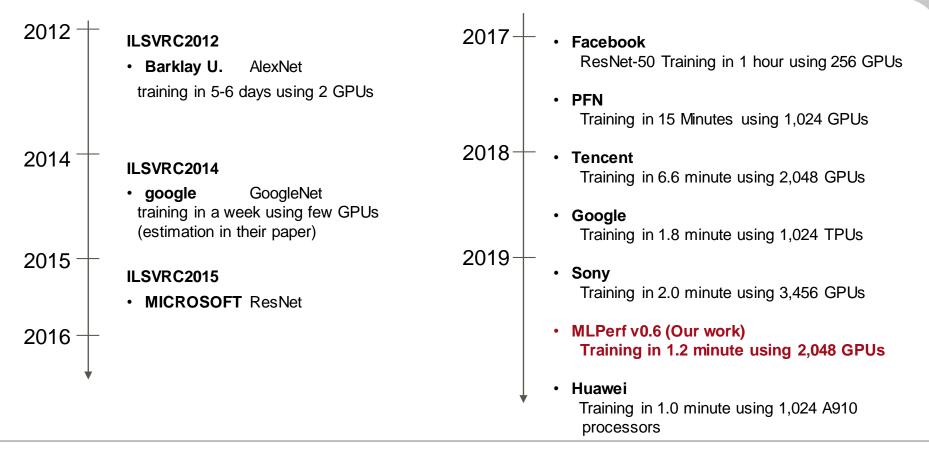
In 2015, our group in Fujitsu Laboratories began working on large-scale distributed training

Year	Hardware	#GPUs	DNN / Dataset	Time	Remarks	
Feb, 2016	Tatara (Kyushu Univ.)	64	AlexNet / ImageNet	-		
June, 2016	TSUBAME 2.5	256	AlexNet / ImageNet	-	*1	
Aug., 2018	ABCI	~4096	ResNet-50 / ImageNet	(6.6 minute)	The Accuracy didn't reach 75%	
April, 2019	ABCI	2048	ResNet-50 / ImageNet	74.7 seconds	arXiv:1903.12650	
June, 2019	ABCI	2048	ResNet-50 / ImageNet	70.4 seconds	MLPerf v0.6	

*1 SWoPP2016「MPIを用いたDL処理高速化の提案」

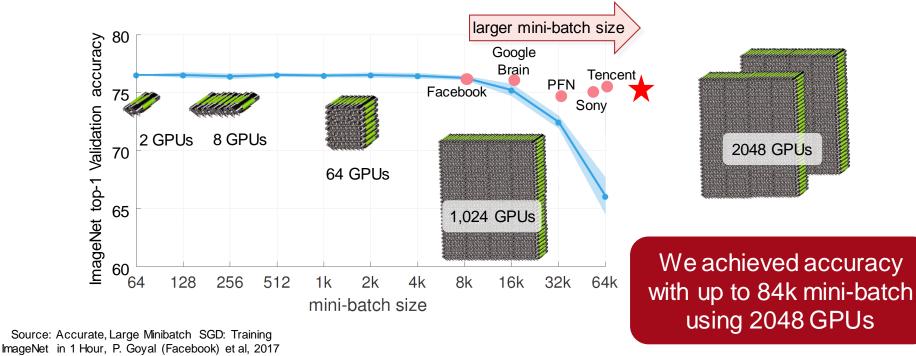
- evaluated the Allreduce algorithm
- proposed running computation and communication processes in parallel
- reported how accuracy worsened with large mini batch sizes.

History of training speed of DNN



Our contribution ... mini-batch size

Facebook was able to increase the mini-batch size up to 8k using ideas such as warm-ups. However, increasing the batch size further would worsen accuracy

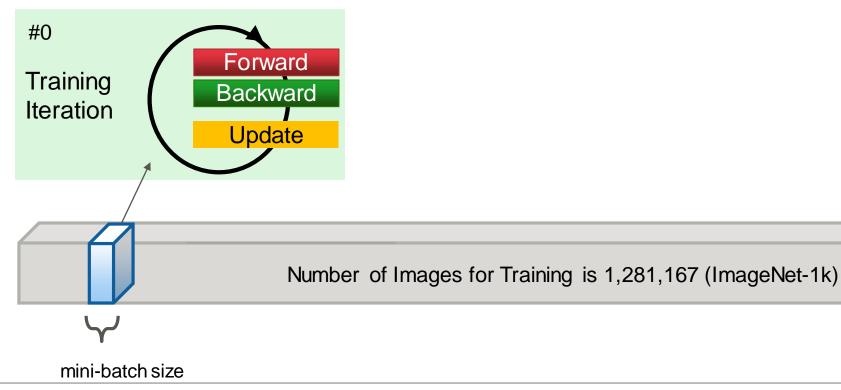


Key points for distributed training

- Data Parallel Method Based on Synchronous-SGD using Allreduce
- Optimal mini-batch size
- Allreduce algorithms

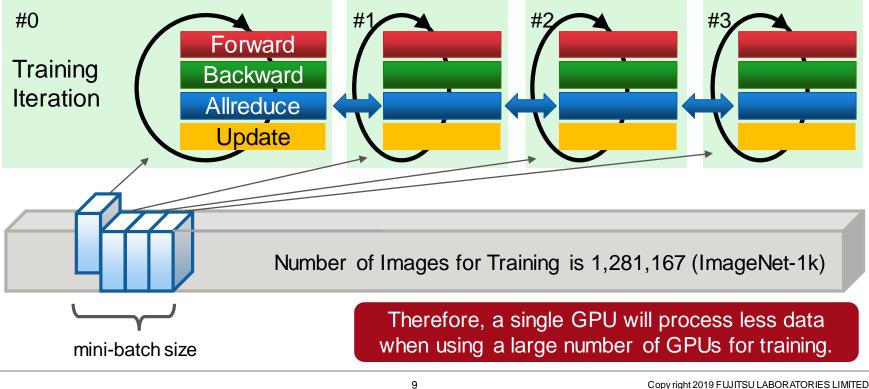
Data Parallel Method

We have continued to accelerate training using a data parallel method based on synchronous-SGD using Allreduce



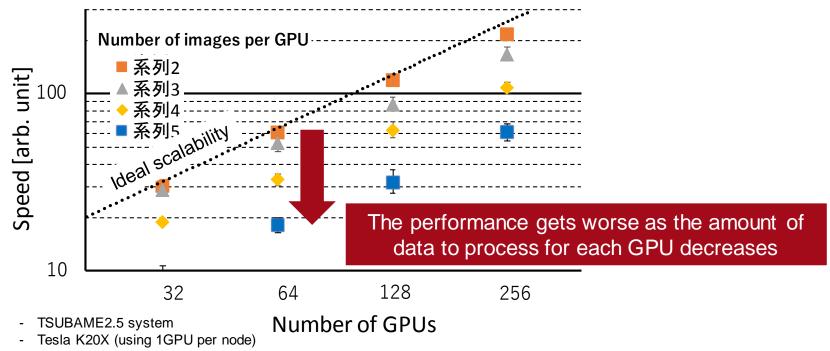
Data Parallel Method

Since 2016, we have continued to accelerate training using a data parallel method based on synchronous-SGD using Allreduce



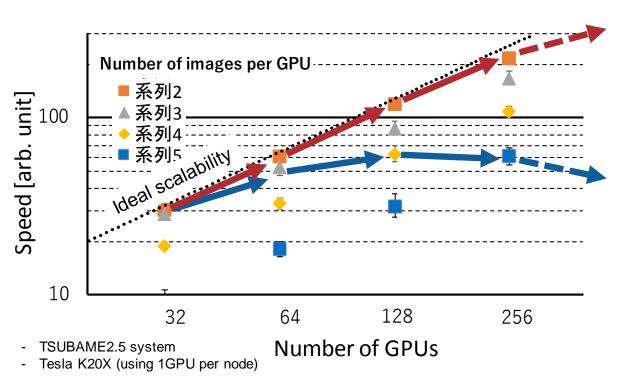
Optimal mini-batch size

The performance gets worse as the amount of data to process for each GPU decreases



Optimal mini-batch size

We selected the optimal mini batch size for enough accuracy



Weak scale

Increases the amount of images per iteration in proportion to the number of accelerators Pros; good scalability Cons; accuracy down in a large mini batch

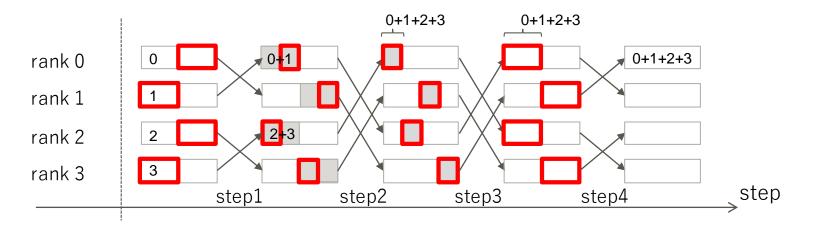
Strong scale

Execute the same process by dividing it with an accelerator Pros; get the same result Cons; Bad scalability

- Reduced parallelism of GPU
- Communication overhead

algorithm	Data size to transfer	#steps	Remarks
Recursive Halving/Doubling			
Ring			
Double Tree			

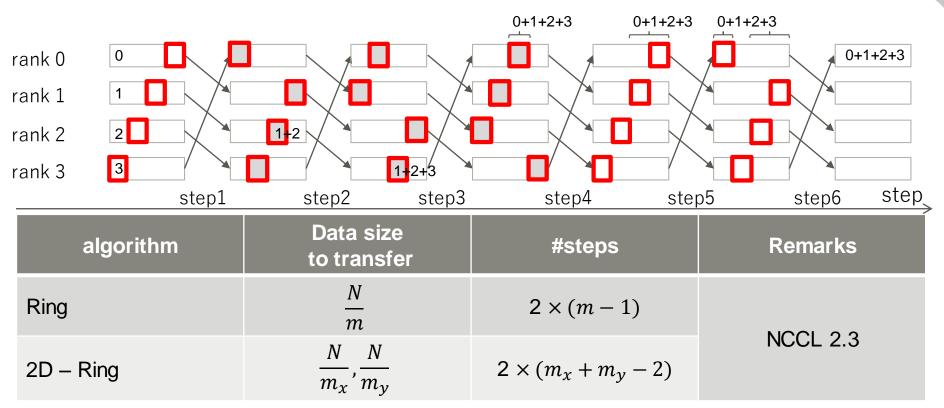
Recursive Halving/Doubling Algorithm



algorithm	Data size to transfer	#steps	Remarks	
Recursive Halving/Doubling	$\frac{N}{2} \sim \frac{N}{m}$	$2 \times log_2 m$	We Implemented	
※ N, m are the Data size and the number of ranks, respectively.				

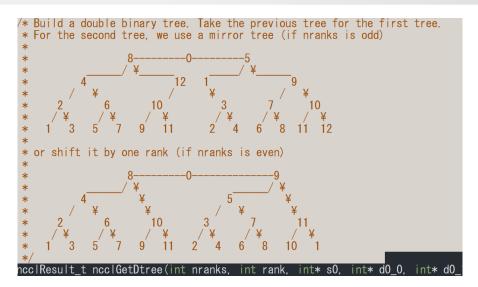
FUITSU

Ring algorithm



X N, m, mx, my are the Data size, the number of ranks, the x-ring size and y ring size, respectively

Double Tree algorithm



source: NCCL v2.4 comments

algorithm	Data size to transfer	#steps	Remarks
Double Tree	$\frac{N}{2}$	$2 \times log_2 m$	NCCL 2.4

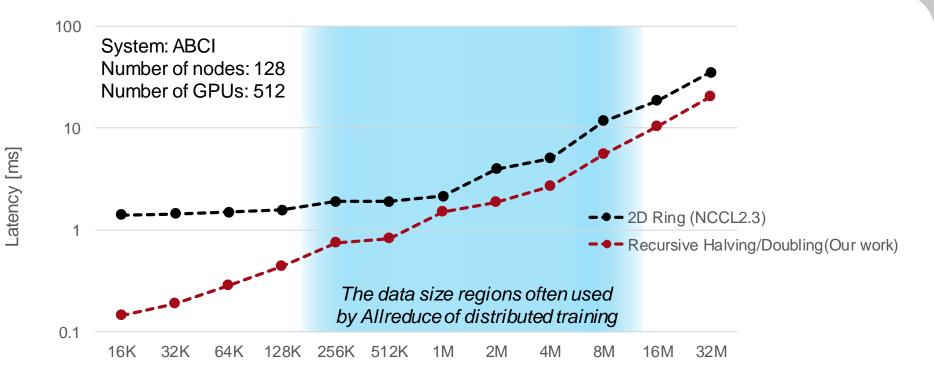
 $\times N$, *m* are the Data size and the number of ranks, respectively.

Comparison of Allreduce algorithms

algorithm	Data size to transfer	#steps	Remarks	
Recursive Halving/Doubling	$\frac{N}{2} \sim \frac{N}{m}$	$2 \times log_2 m$	We Implemented	
Ring	N	$2 \times (m - 1)$	NCCL 2.3	
2D – Ring	\overline{m}	$2 \times (m_x + m_y - 2)$		
Double Tree	<u>N</u> 2	$2 \times log_2 m$	NCCL 2.4	

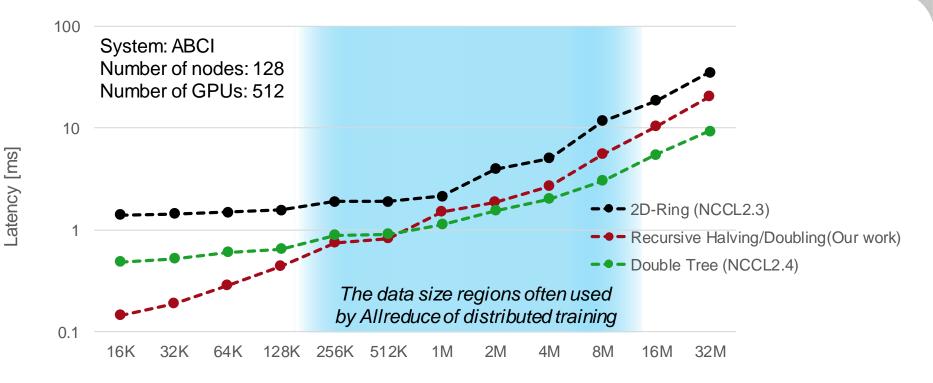
X N, m, mx, my are the Data size, the number of ranks, the x-ring size and y ring size, respectively

Evaluate the Allreduce algorithms



Data Size [Byte]

Evaluate the Allreduce algorithms



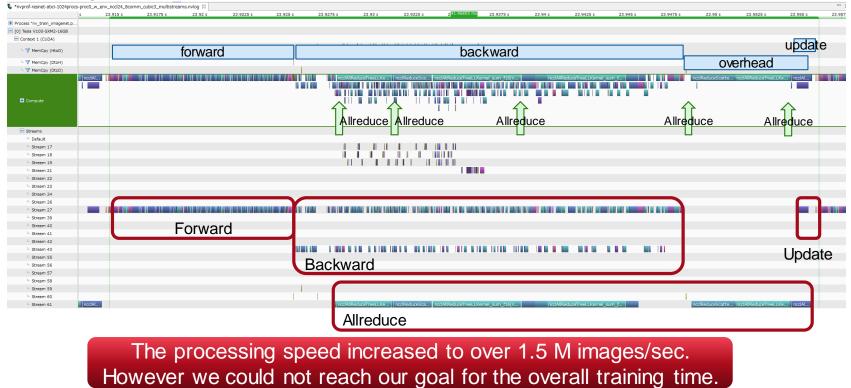
Data Size [Byte]

Optimization Points

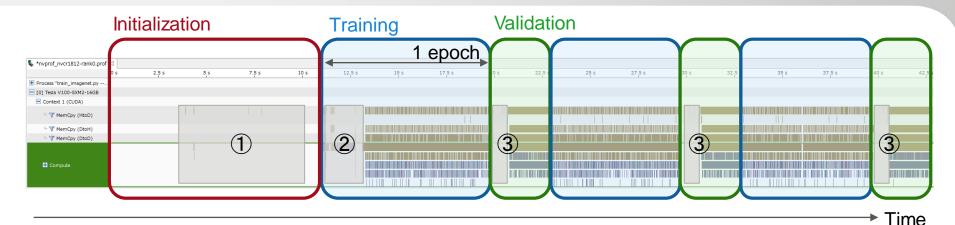
- Accelerate training speed
- Optimization of initialization and unnecessary processing
- Changes for MLPerf v0.6

Accelerate Training Speed

Overlapping Allreduce communication with backward computation



Optimization of initialization and unnecessary processes



1 generate common initial-weights using common random-seed in each GPU instead of broadcasting initial weights from one GPU

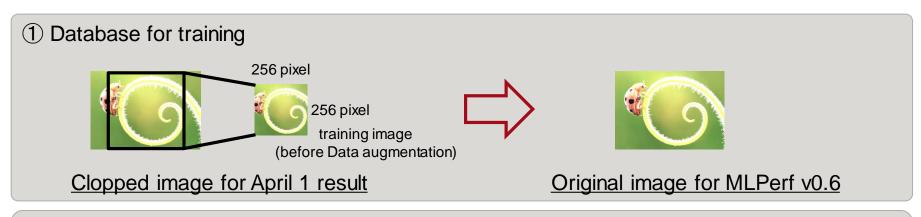
②Overlapping NCCL initialization with framework initialization

③Eliminating unnecessary processes after each epoch (0.1 \sim 0.2 sec. / epoch)

Reduce overall training time by 45 seconds $(120s \rightarrow 75s)$

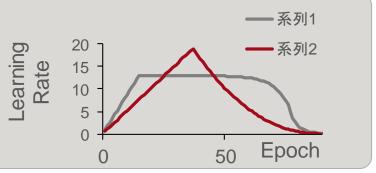
Changes when submitting MLPerf v0.6

■ In MLPerf v0.6 rules, the validation accuracy was increased from 74.9% to 75.9%.



(2) Learning Rate scheduling

We tuned LR scheduling, and changed it to follow MLPerf v0.6 rules



FUIITSU

Evaluation and results

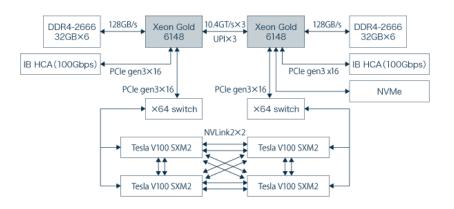
- Hardware
- Software
- Results
 - Validation Accuracy in training
 - Accuracy improvement
 - Scalability

Evaluation environment

Hardware

- compute nodes
 - 4-GPUs / node
 - 2-HCA / node
- IB Interconnect
 - The intra-rack network has topology of full bi-section fat-tree
 - The inter-rack network has topology of fat-tree with 1/3 over subscription

ABCI compute node configuration



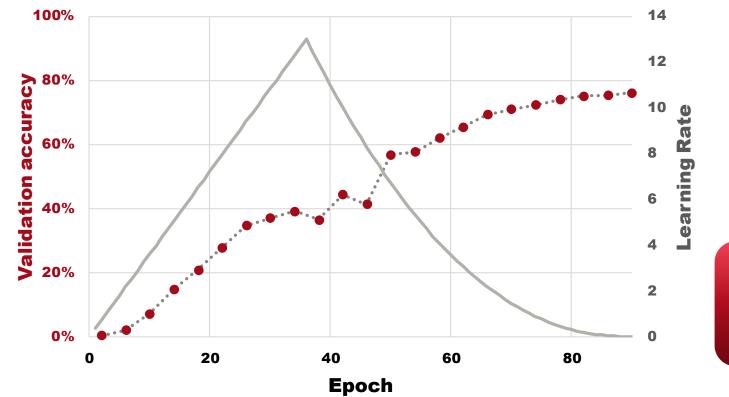
Evaluation environment

Software

- MXNet / Horovod
 - Original source is NVIDIA tuned MXNet
 - We customized and tuned
- Other libralies
 - CUDA, cuDNN v7.5, NCCL v2.4
 - OpenMPI
 - GCC 7.3
 - Python 3.6

HOROVOD

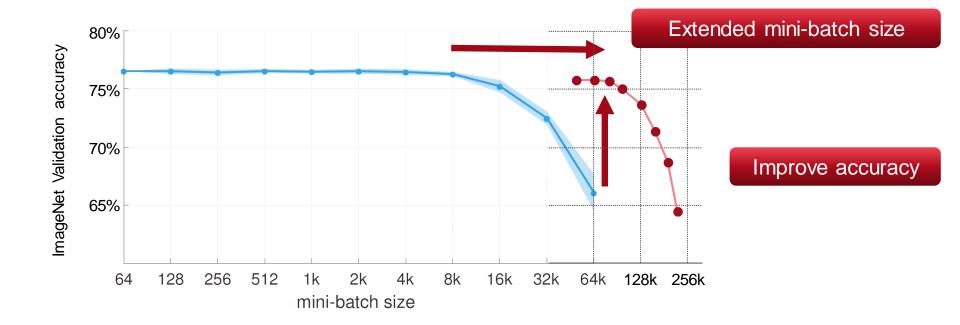
Result; Validation Accuracy in training



We achieved 76% accuracy with 84k mini-batch using 2k GPUs

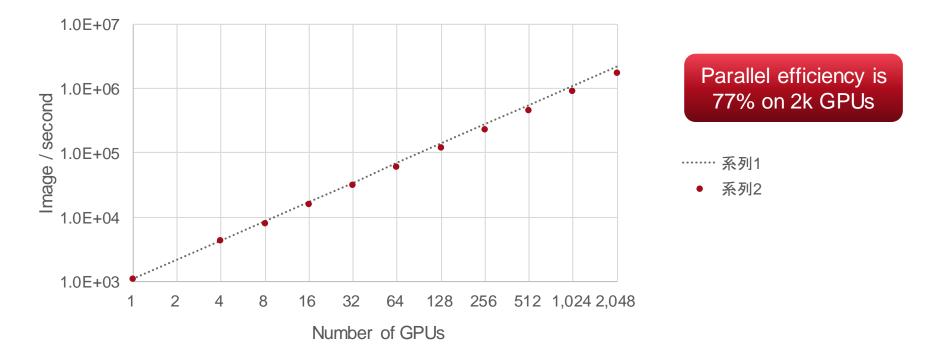
FUITSU

Result; Accuracy improvement



Result; Scalability

The number of computation images per GPU is the same (Weak scale)



Conclusion

We achieved 70 sec. training time (world record[†]) and 84K mini-batch size (world record^{††}) of ResNet-50/ImageNet under MLPerf v0.6 rules^{†††}

Using ABCI 512 compute nodes (2,048 GPUs)

	Mini-batch size(max)	Processor		DL Software	Time	Validation accuracy	
Facebook	8,192	Tesla P100	×	256	Caffe2	1 hour	76.3 %
Google	16,384	full TPU	Pod		TensorFlow	30 min.	76.1 %
Preferred Networks	32,768	Tesla P100	×	1,024	Chainer	15 min.	74.9 %
Tencent	65,536	Tesla P40	×	2,048	TensorFlow	6.6 min.	75.8 %
Google	65,536	TPU v3	×	1,024	TensorFlow	1.8 min.	75.2 %
Sony	55,296	Tesla V100	×	3,456	NNL	2.0 min.	75.3 %
Fujitsu Labs.	86,016	Tesla V100	×	2,048	MXNet	1.17 min.	76.1 %
Huawei	?	Ascend A910	×	1,024	MindSpore	0.997 min.	>75.9%

[†] Our investigation in March, 2019 ^{††} Our investigation under the conditions of SGD and fixed mini-batch size in March, 2019 ^{†††} Used closed Division rules, except for tuning six hyper parameters

FUJITSU

shaping tomorrow with you