
ABCI’s Scheduling Design for
Accommodating Various AI Jobs

Shinichiro Takizawa
The National Institute of Advanced Industrial Science and Technology

(AIST), Japan

8th ADAC Workshop

Outline

• Introduction of AIST and ABCI
• ABCI system overview

– Architecture, network topology, software stack
• ABCI scheduling system

– Workload characteristics of our pre-ABCI system
– Detail design of scheduling system

Introduction of AIST
• A research institute as a part of the Ministry of Economy, Trade and Industry

(METI) of Japan
• Our mission

– Integrate scientific and engineering
knowledge to address industry and
society needs

– Bridge the gap between innovative
technological seeds and
commercialization

We develop ABCI for popularize AI technologies in Japan

4

n World Top-Level compute and data process
capability

n Open, Public, and Dedicated infrastructure
for Al & Big Data Algorithms, Software, and
Applications

n Open Innovation Platform to accelerate joint
academic-industry R&D for AI

AI Bridging Cloud Infrastructure

Peak Performance:
550 PFLOPS (FP16)
37 PFLOPS (FP64)

Effective Performance: (as of Jun 2019)
19.88 PFLOPS (#8 in TOP500)
14.423 GFLOPS/W (#3 in GREEN500)
508.85 TFLOPS (#5 in HPCG)

Power Usage: < 2.3 MW
Average PUE: < 1.1 (Estimated)

ABCI: The Worldʼs First Large-Scale
Open AI Infrastructure

Univ. Tokyo / Kashiwa II Campus

OPERATED SINCE AUGUST 1ST, 2018

5

0.74

0.745

0.75

0.755

0.76

0.765

0

200

400

600

800

1000

1200

1400

1600

MSRA
(2015)

Facebook
(2017)

Google
Brain

(2017)

Preferred
Networks

(2017)

Tencent
(2018)

Sony +
ABCI

(2018)

Google
(2018)

Google
(2018)

Sony +
ABCI

(2019)

Fujitsu
Lab +
ABCI

(2019)

NVIDIA
(2019)

Google
(2019)

Fujitsu
Lab +
ABCI

(2019)

ImageNet / ResNet-50 (Relative speedup & Accuracy)

Relative speedup Accuracy

Re
la

tiv
e

sp
ee

du
p

Ac
cu

ra
cy

World’s Highest Speed in ImageNet-1k Training

MLPerf Training v0.6

SONY’s work
https://arxiv.org/abs/1811.05233
Fujitsu lab’s work
https://arxiv.org/abs/1903.12650

https://arxiv.org/abs/1811.05233
https://arxiv.org/abs/1903.12650

iFDK: CT Image Reconstruction Framework on ABCI

• A high-speed and high-resolution CT image reconstruction framework
running on GPU clusters
– Create 3D images from multiple 2D x-ray images
– Demands for high-resolution CT image:

non-invasive inspection, reverse engineering, etc.
• Our Achievements

– High speed FDK GPU kernel whose compute cost is
1/6 of the existing algorithms

– Efficient FDK computation by overlapping CPU comp.,
GPU comp. and comm.

– Distributed framework for high-resolution
image reconstruction

– Good scalability up to 2K GPUs Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano, Satoshi Matsuoka.
iFDK: A Scalable Framework for Instant High-resolution Image Reconstruction

CBCT geometry and trajectory

Micro-focus
X-ray source

ABCI SYSTEM OVERVIEW

7

8

Gateway and Firewall

Interactive Nodes x 4

Interconnect (InfiniBand EDR)

Service Network (10GbE)

Management and Gateway Nodes x 15

High-Performance Computing System
550 PFlops(FP16), 37.2 PFlops(FP64)
476 TiB Memory, 1.74 PB NVMe SSD

Computing Nodes (w/ GPU) x 1088

Multi-platform Nodes (w/o GPU) x 10
• Intel Xeon Gold 6132 (2.6GHz/14cores) x 2
• 768GiB Memory, 3.8TB NVMe SSD, 1.5TB Intel Optane x2

22 PB GPFS (Group Shared Directory, etc.)
DDN SFA14K (w/ SS8462 Enclosure x 10) x3
• 12TB 7.2Krpm NL-SAS HDD x 2400
• 3.84TB SAS SSD x 216

• Mellanox CS7500 x 2
• Mellanox SB7890 x 229

• Nexsus 3232C x2
• FortiGate 1500D x2
• FortiAnalyzer 400E x1

100Gbps SINET5

GPU NVIDIA Tesla V100 SXM2 x 4
CPU Intel Xeon Gold 6148 (2.4GHz/20cores) x 2

Memory 384GiB

Local Storage Intel SSD DC P4600 (NVMe) 1.6TB x 1

Interconnect InfiniBand EDR x 2

ABCI Hardware Overview

Large-scale Storage System

1 PB Lustre (Home Directory)
DDN SFA14KX (w/ SS9012 Enclosure x 10) x1
• 7.68TB SAS SSD x 185 for data
• 960GB SAS SSD x 13 for metadata

17 PB Object Storage (Scality RING)
HPE Apollo 4510 Gen10 x 24
• 12TB SATA HDD x 1440
• 3.2TB SSD x 24

9

ABCI Compute Node

Xeon Gold
6148

Xeon Gold
6148

10.4GT/s x3DDR4-2666
32GB x 6

DDR4-2666
32GB x 6

128GB/s 128GB/s

IB HCA (100Gbps)IB HCA (100Gbps)

NVMe

UPI x3

x48 switch

Skylake Skylake

x64 switch

Tesla V100 SXM2 Tesla V100 SXM2

Tesla V100 SXM2 Tesla V100 SXM2

PCIe gen3 x16 PCIe gen3 x16

PCIe gen3 x16 PCIe gen3 x16

NVLink2 x2

FUJITSU PRIMERGY Server (2 servers in 2U)

CPU Xeon Gold 6148 (27.5M Cache, 2.40 GHz, 20 Core) x2

GPU NVIDIA Tesla V100 (SXM2) x4

Memory 384GiB DDR4 2666MHz RDIMM

Local Storage 1.6TB NVMe SSD (Intel SSD DC P4600 u.2) x1

Interconnect InfiniBand EDR x2

10

ABCI Node Rack / Interconnect

InfiniBand EDR x1
InfiniBand EDR x6
InfiniBand EDR x4

Rack #1

LEAF#1
SB7890

LEAF#2
SB7890

LEAF#3
SB7890

LEAF#4
SB7890

CX400
#1

C
X2

57
0#

1
C

X2
57

0#
2

CX400
#2

C
X2

57
0#

3
C

X2
57

0#
4

CX400
#3

C
X2

57
0#

5
C

X2
57

0#
6

CX400
#17

C
X2

57
0#

33
C

X2
57

0#
34

FBB#1
SB7890

FBB#2
SB7890

FBB#3
SB7890

Full bisection BW
IB-EDR x 72

Rack #2

LEAF#1
SB7890

LEAF#2
SB7890

LEAF#3
SB7890

LEAF#4
SB7890

CX400
#1

C
X2

57
0#

1
C

X2
57

0#
2

CX400
#2

C
X2

57
0#

3
C

X2
57

0#
4

CX400
#3

C
X2

57
0#

5
C

X2
57

0#
6

CX400
#17

C
X2

57
0#

33
C

X2
57

0#
34

FBB#1
SB7890

FBB#2
SB7890

FBB#3
SB7890

SPINE#1
CS7500

SPINE#2
CS7500

Full bisection BW
IB-EDR x 72

1/3 Oversubscription BW
IB-EDR x 24

n Dense-packaged rack: 34 nodes, 136 Tesla V100
• Theoretical peak performance per rack︓

1.16 PFlops (FP64), 17 PFlops (FP16)
c.f. Google TPU 3.0 Pod (>100PFlops/8racks)

• Power consumption per rack: 67.33 kW

n Interconnect
• Fat-tree topology
• Intra-rack: full bisection BW
• Inter-rack︓1/3 over-subscription (2400/6800)
• Without adoptive routing
• Without Mellanox SHARP

32 Racks

11

ABCI Software Stack

Stack

Operating System RHEL / CentOS 7.5

Job Scheduler Univa Grid Engine 8.6.6

Container Engine Docker 17.12.0 (Users can use only supported container images)
Singularity 2.6.1 (Users can use any container images)

MPI
Intel MPI 2018.2.199
MVAPICH2 2.3rc2, 2.3 / MVAPICH2-GDR 2.3a, 2.3rc1, 2.3, 2.3.1, 2.3.2
OpenMPI 1.10.7, 2.1.3, 2.1.5, 2.1.6, 3.0.3, 3.1.0, 3.1.2, 3.1.3

Development tools

Intel Parallel Studio XE Cluster Edition 2017.8, 2018.2, 2018.3, 2019.3
PGI Professional Edition 17.10, 18.5, 18.10, 19.3
NVIDIA CUDA SDK 8.0, 9.0, 9.1, 9.2, 10.0, 10.1
cuDNN 5.1, 6.0, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6
NCCL 1.3.5, 2.1, 2.2, 2.3, 2.4
Intel MKL 2017.8, 2018.2, 2018.3, 2019.3
GCC, Python, Ruby, R, OpenJDK, Go, Perl

Deep Learning Caffe, Caffe2, TensorFlow, Theano, Torch, PyTorch, CNTK, MXnet, Chainer, Keras, etc.
(Frameworks provided by NVIDIA GPU Cloud can also be deployed)

Big Data Processing Hadoop, Spark

ABCIʼS JOB SCHEDULING SYSTEM

12

Objective and Preparation

• Objective
– Make ABCI an easy-to-use capacity computing system for AI R&D

• Also need to be a capability computing system for grand challenge AI
problems

• Preparation for designing the scheduling system
– Operate a pre-ABCI GPU cluster for AI R&D more than two years (it’s

still in operation)
– Collect job records and analyze them to understand how users use a

GPU cluster for AI R&D
– Use the obtained knowledges to design job scheduling system

13

AAIC and its Workload Logs
• 400x NVIDIA Tesla P100s and InfiniBand EDR accelerate various AI workloads including ML (Machine

Learning) and DL (Deep Learning).
• Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache Spark w/ its

ecosystem.

https://github.com/aistairc/aaic-workload

AAIC Workload Logs
(Jul. 14th, 2017 to Dec. 31st, 2018)

https://github.com/aistairc/aaic-workload

Distribution of Number of Used GPUs/Nodes in AAIC DL Jobs

Single GPU, Single Node
and Multi Node jobs

Used Nodes in Multi Node Jobs# Used GPUs in Single Node Jobs

Single GPU jobs are dominant

Walltime of AAIC DL Jobs

16

Cumulative Distribution of Walltime

Statistics of Walltime

• Some jobs run for two weeks
– Some requested more than two weeks

• Walltime of single GPU jobs is
shorter than that of multi GPU jobs

Observations from AAIC AI Workload

• Most jobs use only one GPU
– Although severs equipped with multiple GPUs are common (e.g. DGX-2)

• Small degree of parallelism are common in parallel jobs
• Walltime varies greatly depending on jobs

– Many of them are less than one hour, but some requires more than a week
• Observations not explained today

– Positive correlation between degree of parallelism and walltime
– Low accuracy of users’ requested walltime
– Use of large array jobs
– etc.

17

Design of ABCI’s Job Scheduling System

• Basic scheduling design
– Define various resource types by splitting compute nodes
– Interactive use, batch jobs and node reservation services
– Allow long maximum walltime and reservation duration

• Emulation of a rack-aware scheduling
– Designed to achieve good performance for small jobs fit in a

rack (34 nodes)
• Other parameters

18

Resource Types

19

Type Name #CPU core
Assigned / Total

#GPU
Assigned / Total

Memory (GB)
Assigned / Total

Local SSD (TB)
Assigned / Total

Fee
(Relative to F)

F (Full node) 40 / 40 4 / 4 360 / 384 1.4 / 1.6 1.0

G.large 20 / 40 4 / 4 240 / 384 0.7 / 1.6 0.9

G.small 5 / 40 1 / 4 60 / 384 0.175 / 1.6 0.3

C.large 20 / 40 0 / 4 120 / 384 0.7 / 1.6 0.6

C.small 5 / 40 0 / 4 30 / 384 0.175 / 1.6 0.2

CPU0

CPU1

GPU0

GPU1

GPU2

GPU3

CPU0

CPU1

GPU0

GPU1

GPU2

GPU3

C.small G.small

G.large C.large

Resource types are defined by cgroups feature included in UGE

Job Execution Services

20

Name of Service Description Maximum
#Nodes

Minimum
Walltime

Maximum
Walltime

Maximum
#Nodes x
Walltime

Spot Batch job (e.g. qsub)
Charges users for nodes x time (in seconds) 512 1 S 72 H 2304 NxH

On-demand Interactive job (e.g. qrsh)
Charges users for nodes x time (in seconds) 32 1 S 12 H 12 NxH

Name of Service Description Maximum
#Nodes

Minimum
Resv. Time

Maximum
Resv. Time

Maximum
#Nodes x

Resv. Time
Reserved Node reservation

Charges users for nodes x reserved_time
(in days)

32 1 D 30 D 12288 NxH

Detail job scheduling description: https://docs.abci.ai/en/03/

Normal Job Execution Services

Node Reservation Services

https://docs.abci.ai/en/03/

Emulation of Rack-aware Scheduling (1/2)

• Limitation
– ABCI does not have full bisection-bandwidth network
– UGE does not consider network topology in scheduling

• Objective
– Provide the maximum network performance for small jobs

• Small jobs : Use less than 34 nodes (within 1 rack)
– Keep wait time for both small and large jobs as small as possible

21

SystemHG

RckHG
0

RckHG
1

RckHG
2

RckHG
32

Emulation of Rack-aware Scheduling (2/2)

• Single Queue
• Two types of host group under the queue

– RackHG: host group for each rack
– SystemHG: unique host group for all nodes

• Jobs using <=34 nodes
– Find a rackHG that has enough nodes and run

the job in the rackHG
• Jobs using >34 nodes

– Select nodes from systemHG
• Different resource pools for different kind of

services
– (1)Spot and On-demand and (2)Others

22

Rack
0

Rack
1

Rack
2

Rack
32

…

Search a rackHG in numerical order

#Nodes <= 34

Spot and On-demand Reservation and etc.

SystemHG

RckHG
0

RckHG
1

RckHG
2

RckHG
32

Emulation of Rack-aware Scheduling (2/2)

• Single Queue
• Two types of host group under the queue

– RackHG: host group for each rack
– SystemHG: unique host group for all nodes

• Jobs using <=34 nodes
– Find a rackHG that has enough nodes and run

the job in the rackHG
• Jobs using >34 nodes

– Select nodes from systemHG
• Different resource pools for different kind of

services
– (1)Spot and On-demand and (2)Others

23

Rack
0

Rack
1

Rack
2

Rack
32

…

Search a rackHG in numerical order

#Nodes <= 34

Select unused nodes from SystemHG in a
dictionary order of node name

#Nodes > 34

Spot and On-demand Reservation and etc.

Other parameters

• Enable backfill and priority option
• Limitation on selecting resource types for job

– Using multiple resources are allowed only when F resource type is used
• i.e. Can not use multiple G.[small | large], C.[small | large] in a job

– A job can use only one resource type
• Limit the maximum number of running jobs per user: 200

– Prevent resource occupation by a specific user
– No restriction on number of job submission

24

Sample Job Script

25

#! /bin/sh
#$ -l rt_F=32
#$ -l h_rt=1:00:00
#$ -N testjob
#$ -l USE_BEEOND=1
#$ -v BEEOND_METADATA_SERVER=4
#$ -v BEEOND_STORAGE_SERVER=16
#$ -cwd

source /etc/profile.d/modules.sh
module load openmpi/3.1.3

Stage-in data to Local SSD
cp -r $HOME/something0 $SGE_LOCALDIR
Stage-in data to BeeGFS
cp -r $HOME/something1 /beeond

mpirun -np 32 ...
...

Type of resource and its amount

Walltime for the job

Create a temporal distributed filesystem
for the job using BeeGFS on Demand

$ qsub -g gaa50004 sample_job.sh

Job Submission Command

Budget code

Local NVMe SSD mount point

BeeGFS mount point

Summary

• Introduce ABCI, an open AI platform
– Architecture, network topology and software stack
– AI workload analysis results of pre-ABCI system
– Detail of scheduling system design

• Future work
– Introduce resource types for memory intensive jobs

• Preparing several 2.8TB memory (2TB by Intel Optane) nodes
– Collect job records executed on ABCI and analyze them
– Consider supporting multiple [C | G].[small | large] resource job

• Combination of them

https://abci.ai/

https://abci.ai/

