

Large-Scale Molecular Dynamics Simulation of Biomolecules in Cellular Environments

<u>Accelerated Data Analytics and Computing Workshop 8</u> <u>University of Tokyo, Kashiwa Campus, Kashiwa, Japan, October 30-31, 2019</u>

GENESIS Generalized-ensemble simulation system

Yuji Sugita

BDR

Laboratory for Biomolecular Function Simulation, RIKEN BDR Computational Biophysics Research Team, RIKEN R-CCS Theoretical Molecular Science Laboratory, RIKEN CPR

- Accelerate MD simulation
 - Why MD is so slow ?
 - How to accelerate MD ?

C. Kobayashi

(R-CCS)

J. Jung (CPR / R-CCS)

T. Mori (CPR)

- Efficient MD algorithms
 - Enhanced Conformational Sampling
 - Application to Protein-Ligand Binding

[I] Atomic Force Evaluation

Atomic force is evaluated as a derivative of Molecular Potential Energy Function.

MOLECULAR POTENTIAL ENERGY $U = \sum_{i=1}^{1} K_{b} (b - b_{o})^{2} + \sum_{i=1}^{1} K_{b} (\theta - \theta_{o})^{2} \exists$ Ц All Angles Hooke 1635 All Bonds + $\sum K_{b} [1 - \cos(n\phi + S)]$ All Torsion Angles Fourier 1768 $+\sum \epsilon [(r_{\%})^{2}-2(r_{\%})]$ All Nonbonded pairs Van der Waals 1837 3329.19: Simple sum 3 All partial charges over many terms Coulomb 1736

[II] Time Integration

$$\mathbf{r}_{i}(t + \Delta t) = \mathbf{r}_{i}(t) + \frac{\mathbf{p}_{i}}{m}\Delta t$$
$$\mathbf{p}_{i}(t + \Delta t) = \mathbf{p}_{i}(t) + \mathbf{F}_{i}\Delta t$$

Equation of Motions $d\mathbf{r}_i$ \mathbf{p}_i $d\mathbf{p}_i$ $\frac{\mathbf{r}}{m}$ $= \mathbf{F}_{i}$

1) Large Number of Atoms

- At least 10⁴ atoms
- Sometimes more than 1M atoms

2) Nonbonded Interactions

 Nonbonded Interaction is the slowest calculations in Energy/Force Evaluations.

<u>3) ∆t must be small</u>

- Fast vibrational motions
- $\Delta t \text{ is } 1 \sim 2 \text{ fsec} = 1 \sim 2 \text{ x } 10^{-15} \text{ sec}$

How to accelerate MD?

1) Hybrid Parallelization

Hierarchical Space Decomposition ⇒ Each CPU computes Local Interaction

Nonbonded Interactions are evaluated in the midpoint cells. → Optimize the balance between computation and communication. J. Jung, T. Mori and Y. Sugita, J. Comp. Chem. **35**, 1064 (2014)

1) Large Number of Atoms

- At least 10⁴ atoms
- > 1M atoms, sometimes

C. Kobayashi, J. Jung et al. J. Comp. Chem. (2015)

J. Jung et al. J. Comp. Chem. (2019)

On K computer at RIKEN and Trinity at LANL, we could show good weak scaling of GENESIS.

How to accelerate MD?

AINEN 2) Optimization of the program Optimized Nonbonded Kernel for each CPU

2) Nonbonded Interaction

 Nonbonded Interaction is the slowest calculations in Energy/Force Evaluations.

```
Algorithm. Real-space non-bonded interaction kernel used for GENESIS 1.0-1.3
do ij = 1, M
 icel = cell index(1,ij)
 jcel = cell index(2,ij)
 do i = 1, N(icel)
   force temp(1:3) = 0.0
    do k = 1, Neighbor(i,ij) Number of neighbors of i-th atm in icel-th cell
      j = Neighbor list(k,i,ij) Neighbor of i-th atom in icel-th cell
      rij(1) = coord(1,i,icel)-coord(1,j,jcel)
      rij(2) = coord(2,i,icel)-coord(2,j,jcel)
      rij(3) = coord(3, i, icel) - coord(3, j, jcel)
      dij = sqrt(rij(1)^2 + rij(2)^2 + rij(3)^3)
      calculate f (1:3):force component from given distance
      force temp(1) = force temp(1) - f(1)
      force temp(2) = force temp(2) - f(2)
                                                     Nonbonded Energy
      force temp(3) = force temp(3) - f (3)
      force(1,j,jcel) = force(1,j,jcel) + f (1)
                                                     Kernel in GENESIS 1.3
      force(2,j,jcel) = force(2,j,jcel) + f(2)
      force(3,j,jcel) = force(3,j,jcel) + f(3)
     end do
    force(1,i,icel) = force(1,i,icel) + force temp(1)
    force(2,i,icel) = force(2,i,icel) + force temp(2)
    force(3,i,icel) = force(3,i,icel) + force temp(3)
  end do
end do
```

How to accelerate MD?

א≡אוא 2) Optimization of the program Optimized Nonbonded Kernel for each CPU

2) Nonbonded Interaction

 Nonbonded Interaction is the slowest calculations in Energy/Force Evaluations.

Algorithm. Real-space non-bonded interaction kernel used for KNL do ij = 1, M icel = cell index(1,ij) jcel = cell index(2,ij) do i = 1, N(icel) if (Neighbor(i,ij) == 0) cycle force temp(1:3) = 0.0do j = 1, N (jcel) rij(1) = coord(i,1,icel)-coord(j,1,jcel) rij(2) = coord(i,2,icel)-coord(j,2,jcel) rij(3) = coord(i,3,icel)-coord(j,3,jcel) $dij = sqrt(rij(1)^2 + rij(2)^2 + rij(3)^3)$ calculate f (1:3):force component from given distance force temp(1) = force temp(1) - f(1)force temp(2) = force temp(2) - f(2)Nonbonded Energy force temp(3) = force temp(3) - f(3)force(j,1,jcel) = force(j,1,jcel) + f(1)Kernel for Intel PHI force(j,2,jcel) = force(j,2,jcel) + f(2)force(j,3,jcel) = force(j,3,jcel) + f (3)end do force(i,1,icel) = force(i,1,icel) + force temp(1) force(i,2,icel) = force(i,2,icel) + force_temp(2) force(i,3,icel) = force(i,3,icel) + force temp(3) end do

New Methods Implemented in GENESIS

• Solve the system-size problem

RIKEN

- Inverse Lookup Table: Jung et al. JCC 34, 2414-2420 (2013).
- Midpoint Cell Method: Jung et al. JCC 35, 1064-1072 (2014).
- Volumetric 3D FFT: Jung et al. CPC 200, 57-65 (2016).
- GPU parallelization: Jung et al. JCTC 12, 4947-4958 (2016).
- Multiple program/multiple data: Jung et al. JCC 38, 1410-1417 (2017).
- Kinetic energy definition: Jung et al. JCP 148, 164109 (2018).
- Optimal temperature: Jung et al. JCTC 15, 84-94 (2019).
- KNL parallelization: Jung et al. JCC 40, 1919-1930 (2019).

• Solve the time-scale problem

- Reaction Path Method: Matsunaga et al. JPCLett 7, 1446-1451 (2016).
- Domain Motion Enhanced model: Kobayashi et al. JPCB 119, 14584-14593 (2016).
- RSE-MTD: Galvelis et al. JCC 36, 1446-1455 (2015) ; Galvelis et al. JCTC 13, 1934-1942 (2017).
- gREST, gREST/REUS: Kamiya et al. JCP 149, 072304 (2018).
- GaREUS: Oshima et al. JCTC in revision

Apply biological problem

- QM/MM: Yagi et al. JCTC 15, 1924-1938 (2019).
- Cryo-EM flexible fitting: Mori et al. Structure 27, 161-174 (2019).

J. Jung (RIKEN)

Fugaku is a nick name of Mt. Fuji

GENESIS for High-Performance MD

Efficient Weak Scaling for Supercomputers w/o GPU

Leader: Y. Sugita

J. Jung, T. Mori,

K. Yaqi

Current main developers:

C. Kobayashi,, Y. Matsunaga,

H. Oshima, K. Kasahara,

Post K computer (Fugaku) (2021 –)

This is free software under GPLv2 License. https://www.r-ccs.riken.jp/labs/cbrt/

GENESIS Benchmark on Infini-band PC-cluster (Intel Gold 6142 2.6 GHz 32 core, GeForce GTX-1080 Ti)

- Accelerate MD simulation
 - Why MD is so slow ?
 - How to accelerate MD?

- Efficient MD algorithms
 - Enhanced Sampling Methods
 - Protein-Ligand Binding Simulation

S. Re (BDR)

A. Niitsu

(CPR)

H. Oshima

(BDR)

K. Kasahara (BDR)

Replica-Exchange MD (REMD)

Upon the exchange of temperatures between replicas, we can sample a wider conformational space than the conventional MD.

Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141-151 (1999)

M. Kamiya (RIKEN \rightarrow IMS)

Replica-Exchange with Solute Tempering (REST/REST2):

T. Terakawa et al. J. Comput. Chem. 32:1228-1234 (2011), S. L. C. Moors et al. J. Chem. Theory Comput. 7:231-237 (2011), L. Wang et al. J. Phys. Chem. B 115:9431-9438 (2011). generalized REST (gREST)

M. Kamiya and Y. Sugita, J. Chem. Phys. 149: 072304 (2018)

$$E_{\text{gREST}} = \frac{\beta_m}{\beta_0} E_{uu} + \left(\frac{\beta_m}{\beta_0}\right)^{l/n} E_{uv} + E_{vv}$$

gREST can define the solute region in a more flexible manner.

The solute region is selected as a part of a molecule or a part of potential energy function.

S. Re (RIKEN)

generalized REST (gREST) M. Kamiya and Y. Sugita, J. Chem. Phys. 149, 072304 (2018) $E_{\text{gREST}} = \frac{\beta_m}{\beta_0} E_{uu} + \left(\frac{\beta_m}{\beta_0}\right)^{t/n} E_{uv} + E_{vv}$ <u>Solute = Ligand + Sidechains at the Binding Sites</u> **Solvent** Solvent-Solvent (vv) Solute-Solvent (uv) Protein Solute-Solute (uu) Ligand

Sidechain motion is enhanced in gREST

Water dynamics is accelerated in gREST

Binding of a ligand to a protein can be understood via three different states, namely, Bound, Unbound, and Encounter complex.

Many questions to be addressed by theoretical chemistry

- Prediction of the Bound and Encounter complex states
- Binding pathways or free-energy landscapes
- Effect of protein structural flexibility
- Kinetics of binding processes

Binding Prediction with gREST

Less expensive, straight forward approach

L99A T4 Lysozyme (T4L L99A)

Solute region:

Ligand+Helix D, E, F and G Dihedral, LJ and CMAP terms 8 replicas (300 K~520 K) 300 ns / replica

A. Niitsu (RIKEN)

S. Re (RIKEN)

2.4 µs in total (300 ns x 8 replicas)

Flat bottom restraint potential:

Center of pocket – Ligand COM Reference distance: 15 Å Force constant: 1 kcal/mol/Å²

L99A T4 Lysozyme

A. Niitsu, S. Re, Oshima, Kamiya, Sugita J. Chem. Info. Model. (2019) in press.

- A well studied benchmark/test system.
- Recently revisited for understanding the conformation-binding coupling. e.g. G. Bouvignies et al (2011) Nature 477:111–117, M. Merski et al (2015) PNAS 112:5039–5044. A. Nunes-Alves et al (2018) Biophys J 114:1058–1066. Y. M. Huang et al (2018) J Chem Theory Comput 14:1853–1864. Y. Wang et al (2016) Elife 5:1–35. P. Vallurupalli et al (2016) Chem Sci 7:3602–3613. J. M. Schiffer et al (2016) Biophys J 111:1631–1640.

Blind Prediction of Five Ligands

A distinction between binders and non-binders possible?

No binding event is observed for 1 μs conventional MD of benzene

A. Niitsu, S. Re, Oshima, Kamiya, Sugita J. Chem. Info. Model. (2019) in press.

Prediction for Binders

Multiple replicas find "native" pose

A. Niitsu, S. Re, Oshima, Kamiya, Sugita J. Chem. Info. Model. (2019) in press.

Prediction for Non-Binders

Ligands rarely enter the cavity

Predicted Binding Poses

X-ray structures are accurately reproduced

Benzene

n-hexylbenzene

X-ray structure (PDB ID: 181L)

X-ray structure (PDB ID: 4W54) X-ray structure (PDB ID: 4W59)

RMSD = 0.25 Å

RMSD = 0.11 Å

RMSD = 0.07 Å

Blue and magenta represent structures with the smallest RMSDs

A. Niitsu, S. Re, Oshima, Kamiya, Sugita J. Chem. Info. Model. (2019) in press.

Free-energy profiles at 300 K obtained from MBAR analysis

Binding Pathways and Intermediates Favors FGH path, Encounter complex is important

Free-energy landscapes at 300 K obtained from MBAR analysis

A. Niitsu, S. Re, Oshima, Kamiya, Sugita J. Chem. Info. Model. (2019) in press.

<u>Summary</u>

- In GENESIS, we implemented efficient hybrid parallelization and optimization for each CPU architecture.
- The optimal temperature definition allows us to extend the time-step in the time integration.
- Enhanced conformational sampling method fills the gap between simulation and experiment.
- Using GENESIS on FUGAKU, we study cellular-scale biology and drug discovery in collaboration with experimental scientists.

Acknowledgement

Ligand-Binding Simulations Dr. Suyong Re (RIKEN BDR) Dr. Hiraku Oshima (RIKEN BDR) Dr. Kento Kasahara (RIKEN BDR) Dr. Motoshi Kamiya (RIKEN → IMS) Dr. Ai Niitsu (RIKEN CPR)

RIKEN

GENESIS developments

Dr. Jung Jaewoon (RIKEN CPR/R-CCS) Dr. Chigusa Kobayashi (RIKEN R-CCS) Dr. Takaharu Mori (RIKEN CPR) Dr. Kiyoshi Yagi (RIKEN CPR) Prof. Yasuhiro Matsunaga (RIKEN → Saitama Univ.)

Simulations in Crowded Cellular Environments

Prof. Isseki Yu (RIKEN → Maebashi Inst. of Tech.) Prof. Tadashi Ando (RIKEN → Tokyo University of Science) Prof. Ryuhei Harada (RIKEN → Tsukuba Univ.) Prof. Michael Feig (MSU, USA) Dr. Greg. Nawrocki (MSU, USA) Prof. Wonpil Im (Lehigh Univ., USA) Dr. Karissa Sanbonmatsu (LANL, USA)

Fundings (to YS)

RIKEN R-CCS, BDR, iTHES RIKEN Pioneering Projects MEXT KAKENHI 26119006 HPCI strategic research project 1 post-K priority issue 1 JST CREST

<u>Computational resources:</u> K computer, FX10 in University of Tokyo by HPCI system, and HOKUSAI by RIKEN Advanced Center for Computing and Communication.