
(Supplementary information)

Sony Corporation R&D center

Copyright 2019 Sony Corporation

Sony's deep learning development environment
for massively large scale training

Takuya Narihira & Hisahiro Suganuma
8th ADAC Workshop, Oct 30, 2019

ADACSony Corporation R&D Center2019.10.302

Agenda

• Deep Learning at Sony
• Large Scale Training

• Large model training

• Distributed training

Deep Learning at Sony

ADACSony Corporation R&D Center2019.10.304

Sony’s Product

Deep Learning is being utilized in many application domains.

ADACSony Corporation R&D Center2019.10.305

Software 2.0 https://medium.com/@karpathy/software-2-0-a64152b37c35
https://media.neurips.cc/Conferences/NIPS2018/Slides/Olukotun-NIPS-2018.pdf

“Gradient Descent can write code better than you. I’m sorry.“
Andrej Karpathy

Software 1.0 Software 2.0

• Write in code (C++, Python …)
• Requires domain expertise
• Hard to maintain
• Does not scale

• Written in the weight of NN by optimization
• Requires data
• Easier to maintain (Data tells)
• Scale empowered by data

We need techniques, infrastructures and echo-systems for software 2.0 era

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://media.neurips.cc/Conferences/NIPS2018/Slides/Olukotun-NIPS-2018.pdf

ADACSony Corporation R&D Center2019.10.306

Neural Network Libraries

nnabla.org

Open source (Apache 2.0 license)

Deep learning framework with Python API

Sony's deep learning software

Intuitive, fast and easy to deploy

Neural Network Console

dl.sony.com

Windows Desktop (free) & Cloud (paid)

GUI based deep learning IDE

ADACSony Corporation R&D Center2019.10.307

NNC demo

Easy model building, experiment, and deployment

8

Neural Network Console x ABCI

Training can be distributed over GPUs by just clicking a couple of times in GUI

ADACSony Corporation R&D Center2019.10.309

AI Bridging Cloud Infrastructure (ABCI)

The world's first large-scale Open AI Computing Infrastructure,
constructed and operated by National Institute of Advanced
Industrial Science and Technology (AIST).

https://github.com/aistairc/abci-docs/

https://www.aist.go.jp/
https://github.com/aistairc/abci-docs/

ADACSony Corporation R&D Center2019.10.3010

Neural Network Libraries

nnabla
(C++,Python, CLI)

nnabla
C-runtime

3rd party
Framework
/Runtime

nnabla Model Format Converter

CPU CUDA OpenCL CPU ARM CMSIS

NNP NNB ONNX

Linux, Windows, macOS, Android, iOS, RasPI, Embeded etc.

TF, PyTorch, TensorRT, SNPE etc.
Compute
backend

Programming
APIs & Runtime

Model
Format

Format
Converter

OS

Console

TF

ADACSony Corporation R&D Center2019.10.3011

Easy network definition

Both static & dynamic graph paradigms are supported

ADACSony Corporation R&D Center2019.10.3012

nnabla-examples: A bunch of SoTA training scripts
https://github.com/sony/nnabla-examples

Please use research baselines & application prototyping etc.

“dog”

Black  BlondeMask  Texture

Drawing  Texture Horse  Zebra Label  Image

Pix2PixHD StarGAN

MUNIT CycleGAN Self-Attention GAN
Skirt  Pants

InstaGAN

Generative models for content creation

Large Scale Training

ADACSony Corporation R&D Center2019.10.3014

Why large scale training is important? 1/2

Bigger models are better in performance (accuracy)

Class conditional image generator

Biggest models win in
recognition tasks

Image generation models has also become
bigger (requires 512 cores TPUv3 pod to train)

Network size (bigger)

Pe
rf

or
m

an
ce

 (b
et

te
r)

Recognition Generation

Bigger Better

Cite: GPipe Cite: BigGAN

ADACSony Corporation R&D Center2019.10.3015

Why large scale training is important? 2/2

Large dataset gives better performance

Pretraining on bigger dataset gives
better performance

https://research.fb.com/publications/exploring-the-limits-of-
weakly-supervised-pretraining/

Data size becomes bigger

https://twitter.com/goodfellow_ian/status/1084973596236144640?s=20

GAN progress on facial generation

Bigger model, dataset, and data size impose large memory and
longer training time

https://research.fb.com/publications/exploring-the-limits-of-weakly-supervised-pretraining/
https://twitter.com/goodfellow_ian/status/1084973596236144640?s=20

ADACSony Corporation R&D Center2019.10.3016

Large scale training: Large model execution in nnabla

Presentation only

Distributed Training

(Supplementary information)

Sony Corporation R&D center

Copyright 2019 Sony Corporation

Introduction of techniques for scaling up
distributed training

- toward over 100K mini-batch training –

Hisahiro SUGANUMA

Copyright 2019 Sony Corporation2019.10.3019

Agenda

• Overview of data parallel distributed training

• Problems regarding scaling up disrtibuted training

• Techniques for large scale distributed training
• Brief introduction of our new optimizer “STiLL”

• Experimental Result : ImageNet/ResNet-50 training

Copyright 2019 Sony Corporation2019.10.3020

Brief introduction of our recent activities

• We are studying distributed training to train DNN models in shorter time.

• And to benchmark our framework, we have published the training results of
ImageNet/ResNet-50 that contain the time of training, the final accuracy and
techniques for large batch training.

630 sec/bs=34k 224 sec/bs=34,68k

112 sec/bs=54k 68 sec/bs=96k

Publish date

Brief overview of Distributed Training

Copyright 2019 Sony Corporation2019.10.3022

Paradigms of distributed training : Data and Model Parallelism

Data parallelism Model parallelism

Pros - It is simple to scale out the number of workers. - It can deal with very big model like “Transformer”.

Cons Increasing batch-size make optimization difficult
significantly.

- Suffering from computational inefficiency. (Recently it is
getting more better.)

Data parallelism Model parallelism

Train data

model

split
Train data

model
split

Each GPU has the same model weight and
training with sharded data. Each GPU has a different part of model weight.

Scope of my talk

Copyright 2019 Sony Corporation2019.10.3023

DNN Training on single GPU.

• DNN Training basically employs “Mini-batch training”
• Training consist of fetch data, forward, backward and update weights.

• Iterative training with each split dataset “mini-batch” to optimize DNN parameters(weight)

gradually.

Output

Trained Model
TrainingDataset

Input

DNN Model
mini-batch training with a single GPU

Training
GPU
GPU
GPU

N/W

CPU

Fetch data Forward Backward Update

One iteration in the training

Copyright 2019 Sony Corporation2019.10.3024

Data-parallel distributed DNN Training

• Data parallel training needs to synchronize the gradients among the all workers before it
updates the weights since it must maintain the consistency of the model.

• Synchronization is the obviously overhead to the time of training.

GPU
GPU
GPU

N/W

N/W

CPU

GPU
GPU
GPU

CPU

GPU
GPU
GPU

N/W

CPU

GPU
GPU
GPU

N/W

CPU

mini-batch training for each GPU

GPU
GPU
GPU

N/W

N/W

CPU

GPU
GPU
GPU

CPU

GPU
GPU
GPU

N/W

CPU

GPU
GPU
GPU

N/W

CPU

gradient-sync inter-GPU/internode

Sync

training

training

training

training

parameters

parameters parameters

parameters

Output

Trained Model

Dataset

Input

DNN Model

Training sync Training Training syncUpdate Update

Fetch data Forward Backward

Problems regarding large scale training,
and how do we solve them ?

Copyright 2019 Sony Corporation2019.10.3026

Problems of distributed large-batch training.

1. To achieve convergence with very small number of update steps
• The larger the mini-batch size is, the more number of GPUs we can use.

• However, larger mini-batch size also makes it more difficult for convergence.

2. To reduce gradient synchronization time
• Ring topology becomes too slow, if using more than hundreds of GPUs .

Mini-batch size will be N-times size, if using N GPUs.
The point is developing the way to train even with large mini-batch size.

The point is developing a topology (for collective communication) which allow for an
efficient synchronization even with the thousands of GPUs.

Out of scope in this talk

Copyright 2019 Sony Corporation2019.10.3027

Convergence degradation in large-scale distributed DNN Training

▶ Mini-batch size is also increased by a multiple of the number of GPUs.
With SGD, it is hard to train DNN with large batch-size because …

1.The number of training updates decreases
(∝1/#workers)

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 −
𝜂𝜂
𝐵𝐵1

�
𝑥𝑥𝑖𝑖∈𝐵𝐵1

𝛻𝛻𝑙𝑙(𝑥𝑥𝑖𝑖 ,𝑤𝑤𝑡𝑡) 𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 −
𝜂𝜂

2 𝐵𝐵1
�
𝑥𝑥𝑖𝑖∈𝐵𝐵2

𝛻𝛻𝑙𝑙 𝑥𝑥𝑖𝑖 ,𝑤𝑤𝑡𝑡

Optimal

𝑤𝑤 ∶ Weights
𝐵𝐵1 ∶ Mini−batch size
𝜂𝜂 ∶ Learning rate

1 worker 2 workers

2. Easy to converge into sharp minima

※ N. S. Keskar et al. “On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima” ICLR 2017

Example: optimization in 2-dimension.

#steps is halved.

Copyright 2019 Sony Corporation2019.10.3028

Real world approaches to scale batch-size.

1. Tuning hyperparameters on SGD
• Many techniques were proposed.

E.g. “Learning rate warmup”, “LARS”, “LAMB”, …etc.

• We employ this way for several reasons. Mainly we consider that SGD to train DNN is well-

studied and we can use more wisdom of the past researches

2. Using second or higher order optimization like “Newton’s method”
• They could optimize with smaller steps without sharp minima. But most of them need enormous

computing resource due to using hessian.

• Recently proposed approximation have made us optimize DNN in real.

Copyright 2019 Sony Corporation2019.10.3029

Overview of common techniques for large batch training

Up to 64K mini-batch these are enough to train.
However we need another technique to increase batch-size more and more !

Learning rate warmup*

LARS optimizer**

Label Smoothing***

Zero-γ-init

- Linearly scaling up LR in several epochs.

Warming up LR.

- Smoothing i-th label of Softmax output q
(0 < ε < 1, K is the number of classes.)

- Layer-wise Adaptive LR Scaling with the ratio of
weights and grads.

- Initilizing γ of batchnorm in residual path to 0.

conv BN Relu
↑ Init γ = 0 here.* T.He et al. Bag of Tricks for Image Classification with Convolutional Neural Networks (arxiv.org/abs/1812.01187)

** Y. you et al. Large Batch Training of Convolutional Networks (arxiv.org/abs/1708.03888)

*** C. Szegedy et al Rethinking the Inception Architecture for Computer Vision
(arxiv.org/abs/1512.00567)

https://arxiv.org/abs/1708.03888

Copyright 2019 Sony Corporation2019.10.3030

STiLL : Smoothly Transition from LAMB* to LARS.

• We proposed the new optimizer “STiLL” that uses two optimizer, LAMB and LARS at
the same time.

• STiLL starts from LAMB:LARS=100:0 to update the weights, then it linearly changes
the ratio of them during warmup duration.

• After the warmup duration, it uses only LARS to update weights.

*Y.You et al, Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
https://arxiv.org/abs/1904.00962

Copyright 2019 Sony Corporation2019.10.3031

Why we mixed them?

• We expected that LAMB accelerates convergence in the beginning of training and
LARS helps to get better generalization performance by combining them.

LAMB is initially faster like Adam

LARS reaches better solution
like Momentum SGD

↓ batch training with LARS and LAMB (these cases did not converge.)

Copyright 2019 Sony Corporation2019.10.3032

Other Technique – Smoothout, that strengthens regularization.

• Smoothout* is one of the regularization technique proposed by W.Wen.
1. Add noise from Uniform dist. to the weights before forward computation.

2. Do forward and backward computation.

3. Sub. noise from the weights.

4. Update weights.

• “Smoothout” can avoid sharp-minima, that is more important in large-batch
training. We use this over 64K batch training.

*W.Wen et al. SmoothOut: Smoothing Out Sharp Minima to Improve Generalization
in Deep Learning https://arxiv.org/abs/1805.07898

https://arxiv.org/abs/1805.07898

Experiments

Copyright 2019 Sony Corporation2019.10.3034

Experiments(1): Performance comparison with LARS, LAMB and STiLL

• Firstly, we conducted ImageNet/ResNet-50 training while changing optimizers,
“LAMB”, “LARS” and “STiLL”, and increasing batch-size from 72K to 96K.

• STiLL outperforms “LAMB” and “LARS” in the final validation accuracy.

Top-1 accuracy of ImageNet/ResNet-50
model after training for 90 epochs

Mini-Batch Size LAMB LARS STiLL

72K 70.9% 75.5% 76.1%

80K N/A 75.1% 75.9%

96K N/A N/A 75.5%

Training curve of LAMB, LARS and STiLL

#epoch 70 80 90

75%

Copyright 2019 Sony Corporation2019.10.3035

Experiments(2): Performance of NNL in ABCI.

• We evaluated wallclock time to train for 90 epochs and convergence accuracy with
STiLL in ABCI.

BS epoch #GPU Wallclock Accuracy
64K 90 2048 97 sec 76.13 %
80K 90 2560 79.7 sec 75.93 %
96K 90 3072 67.65 sec 75.46 %

- Training curve

- Results

- Settings
Batch size 64K, 80K, 96K

STiLL’s Initial/MAX LR Init: 1.36(LARS)/0.0012(LAMB), Max: 26.1

LARS Momentum 0.955

Warmup/LR Decay Warmup:25epoch, and then poly decay.

Label-smoothing α 0.1

Weight decay 8e-5

Copyright 2019 Sony Corporation2019.10.3036

Experiments (3): Training longer epochs could give better performance

• Then we made extra experiments to see if the model get better generalization
performance by training longer epochs.

• In the result, the model could reach good solution even over 100K batch training.

BS epoch #GPU Acc
96K 110 3072 76.19%

128K 150 4096 76.12 %

- Training curve

- Results

- Settings
- Use the same settings as the previous exp.

Copyright 2019 Sony Corporation2019.10.3037

Summary

• We proposed the new optimizer “STiLL” for large-scale training.

• Then empirically showed that “STiLL” outperforms “LARS” and “LAMB” in Image-
classification task.

• Also we succeeded to train with 128K batch, however even longer epoch we need
now.

Copyright 2019 Sony Corporation2019.10.3038

Question?

SONY is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.

	スライド番号 1
	Agenda
	スライド番号 3
	Sony’s Product
	Software 2.0
	Sony's deep learning software�
	NNC demo
	スライド番号 8
	AI Bridging Cloud Infrastructure (ABCI)
	Neural Network Libraries
	Easy network definition
	nnabla-examples: A bunch of SoTA training scripts
	スライド番号 13
	Why large scale training is important? 1/2
	Why large scale training is important? 2/2
	Large scale training: Large model execution in nnabla
	スライド番号 17
	スライド番号 18
	Agenda
	Brief introduction of our recent activities
	スライド番号 21
	Paradigms of distributed training : Data and Model Parallelism
	DNN Training on single GPU.
	Data-parallel distributed DNN Training
	スライド番号 25
	Problems of distributed large-batch training.
	Convergence degradation in large-scale distributed DNN Training
	Real world approaches to scale batch-size.
	Overview of common techniques for large batch training
	STiLL : Smoothly Transition from LAMB* to LARS.
	Why we mixed them?
	Other Technique – Smoothout, that strengthens regularization.
	スライド番号 33
	Experiments(1): Performance comparison with LARS, LAMB and STiLL
	Experiments(2): Performance of NNL in ABCI.
	Experiments (3): Training longer epochs could give better performance
	Summary
	Question?
	スライド番号 39

