SONY

Sony's deep learning development environment
for massively large scale training

Takuya Narihira & Hisahiro Suganuma
8th ADAC Workshop, Oct 30, 2019

Sony Corporation R&D center

Copyright 2019 Sony Corporation

Agenda

« Deep Learning at Sony
« Large Scale Training
Large model training

Distributed training

S ONY 2 2019.10.30 Sony Corporation R&D Center

SONY

Deep Learning at Sony

Sony’'s Product

Ears
S E

Deep Learning is being utilized in many application domains.

SONY 4 ‘ 2019.10.30 Sony Corporation R&D Center

https://medium.com/@karpathy/software-2-0-a64152b37¢c35
SOftwa re 2 . O https://media.neurips.cc/Conferences/NIPS2018/Slides/Olukotun-NIPS-2018.pdf

Software 1.0 Software 2.0

ARG o
o d ald].word == p) %y T2 e N\ NEBAL RIS
} return c; } function dynamicSort(a) c-‘u-" ; ’-f_h@Tﬁ—-“i izw}:%‘ :\r"ﬂgﬁ_j Ej"’
(B = -1, a = a.substr(1)); retun fucinl 0 AN G P G e g S
[a) fa] 21 : @)afebssideid TS . \
’) 3 Cl3)° d"a.‘.u. if (@ y=_b. length) | Tm
-, b +=) : e B B b-_l" g
« Write in code (C++, Python) . Writtgn in the weight of NN by optimization
« Requires domain expertise Requiresdata
. Hard to maintain « Easier to maintain (Data tells)
« Does not scale e Scale empowered by data

“Gradient Descent can write code better than you. I'm sorry.”
Andrej Karpathy

We need techniques, infrastructures and echo-systems for software 2.0 era

SONY 5 ‘ 2019.10.30 Sony Corporation R&D Center

ADAC

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://media.neurips.cc/Conferences/NIPS2018/Slides/Olukotun-NIPS-2018.pdf

Sony's deep learning software

M Neural Network Console m Neural Network Libraries
dl.sony.com o nnabla.org

CNN (Lenet5)

Comolut MaxPool Comolut MaxPool

X = nnabla.Variable((batch_size, 1, 28, 28))
cl = PF.convolution(x, 16, (5, 5), name='cl")
cl = F.relu(F.max_pooling(cl, (2, 2)))

c2 = PF.convolution(cl, 16, (5, 5), name='c2")
c2 = F.relu(F.max_pooling(c2, (2, 2)))

f3 = F.relu(PF.affine(c2, 50, name='f3"))

y = PF.affine(f3, 50, name='f4")

GUI based deep learning IDE Deep learning framework with Python API
Windows Desktop (free) & Cloud (paid) Open source (Apache 2.0 license)

Intuitive, fast and easy to deploy

SONY 6 2019.10.30 Sony Corporation R&D Center

0

PROJECT + New Project B Open Project Q Search Text Here ACTION v Training Evaluation

e ; - ; . i
DATASET 01_logistic_regression.sdcproj Inputs : ¥[1,28,28] Outputs : y[1] = : i D C[) il |>]

Training Dataset : small_mnist 4or9_training.csv {1500 datas, 2

columns)

Validation Dataset : small_mnist 4or9_testcsy (491 datas, 2 Overview

02_binary_cnn.sdcproj inputs : x[1,28,28] Outputs : y[1]
Training Dataset : small_mnist 4or9 _training.csv (1500 datas, 2
columns)

Validation Dataset : small_mnist 4o0r9_testcsy (491 datas, 2

06_auto_encoder.sdcproj Inputs : x[1,26,28] Outputs: x[1,28,28]
Training Dataset : small_mnist_4or9 training.csv (1500 datas, 2
columns)
Validation Dataset : small_mnist_4or9_testcsy (491 datas, 2
Statistics
10_deep_mlp.sdcproj Inputs: x[1,28,28] Outputs : y[1] 315/06/18 14:1 Output 0
Training Dataset : small_mnist_4or9 _training.csv (1500 datas, 2 e 0
cc:lum?.s} valiral I =
ti' \alidation Dataset : small_mnist_4or%_testcsy {491 datas, 2 0
0
. . :) . 0
12_residual_learning.sdcproj nputs : x[1,28,28] Outputs : y[1]
Training Dataset : mnist_fraining.csv (60000 datas, 2 columns) 0
\izlidation Dataset : mnist_testcsv (10000 datas, 2 columns) 0
0

LeNet.sdcproj Dataset "Training": mnist_training.csv {60000 datas, 2 columns) 217 /08 4m4 Tacke
Dataset "Validation™ mnist_testcsw (10000 datas, 2 columns)

Training: ----

Easy model building, experiment, and deployment

@ EDIT TRAINING EVALUATION image_recognition.CIFAR10.resnet.resnet-110 C@y DATASET

Components Main X +
Q Search v §< [D D :u: Q 100% @ Action
~ 10
Input Input \:‘ Train [0 Sstructure Search
~ Loss Dataset - x
SquaredError Evaluat
Huberl oss
AbsoluteError ABCI Standard
Epsiloninsensitivel oss Mu|5ca|a_2 O G.small —
BinaryCrossEntropy Value - 1.0 - _
Value : 0.0 -
CategoricalCrossEntropy _
Convolution [7 See Spec & Price
SoftmaxCrossEntropy KemelShipe =23
KLMultinomial RepeatStart 3
— - R - : Overview Main v
Layer Property .
ralization: | x18 = S
R RelU_2 x18 g
: . .
Convolution 2 18 o
KemelShape - 3,3 =
as -
Neural Network-Console x ABCI
x1 W
==

Training can be distributed over GPUs by just clicking a couple of times in GUI

Al Bridging Cloud Infrastructure (ABCI) https://github.com/aistairc/abci-docs/

The world's first large-scale Open Al Computing Infrastructure,
constructed and operated by National Institute of Advanced

Industrial Science and Technology (AIST).

Compute Node Gateway Node

Core Router Firewall

FUJITSU Server FUJITSU Server

PRIMERGY CX2570 M4 x 1088 { NVIDIA Tesla V100 x 4 / node) PRIMERGY RX2540 M4 % 5

Total Theoretical Peak Performance ; 550.6PetaAl-FLOPS (FP64 ; 37.2PFLOPS, FP32 ; 75.0PFLOPS FortiGate 15000 x 2

Total Memory Capacity : 476TiB (Total Memory Bandwidth : 4.19PB/s) Nexus 3232C x 2 FortiAnalyzer 400E x 1
[|

InfiniBand

Multiplatform Node Interactive Node Storage

Supermicra 4029GR-TRT2 x 10 PRIMERGY RX2540 M4 x 4 (Lustre)

2019.10.30 Sony Corporation R@Center

https://www.aist.go.jp/
https://github.com/aistairc/abci-docs/

Neural Network Libraries

Format nnabla Model Format Converter
Converter

Model
Format

3rd party
Framework
/Runtime

..... RO TE.-PvTorch.-TensorRT.-SNRE. etc
-~ II,I YIVI\..II, I_IIJ\JII\I,JI‘II— L]

""""""
‘‘‘‘‘
...........

Programming hnabla nnab_la
APls & Runtime B{SEENAR Al (eI R C-runtime

Compute =51 repa | [OpencL CPU ARM CMSIS
backend
0OS Linux, Windows, macOS, Android, iOS, RasPl, Embeded etc.

=10 1.'D'4 10 \ 2019.10.30 Sony Corporation R&D Center

Easy network definition

CNN (Lenet5)

[
Corvolut MaxPool .)
-

X = nnabla.Variable((batch size, 1, 28, 28))
cl = PF.convolution(x, 16, (5, 5), name="cl')
cl = F.relu(F.max_pooling(cl, (2, 2)))

c2 = PF.convolution(cl, 16, (5, 5), name='c2")
c2 = F.relu(F.max_pooling(c2, (2, 2)))

3 = F.relu(PF.affine(c2, 50, name="'f3"))

y = PF.affine(f3, 50, name='f4")

Both static & dynamic graph paradigms are supported

=10 1\.'D'¢ 11 ‘ 2019.10.30 Sony Corporation R&D Center

nnabla-examples: A bunch of SoTA training scripts o
https://github.com/sony/nnabla-examples

Generative models for content creation

Pix2PixHD StarGAN ~ InstaGAN
Mask = Texture Black = Blonde Skirt = Pants

MUNIT CycIeGAN Self- Attentlon GAN

Drawing - Texture Horseé Zebra - Label 2> Iae
Please use research baselines & application prototyping etc.

=10 1.'D'4 12 \ 2019.10.30 Sony Corporation R&D Center

SONY

Large Scale Training

Why large scale training is important? 1/2

Bigger models are better in performance (accuracy)

Recognition cite: Gpipe

0.85

AmoebaNetB(6, 512)

) &
() AmoebaNetC(6, 228)
)
"CI_J' 0.82 NasNeta @ ‘SENet
ol
(O] ResNeXt-101
= ®
% 0.79 ResNet-152
@
g Inception3
O
bl 0.76
(O]
(a1 L]
GoogleNet
0.73 T T T
6 60 60Q

Generation Cite: BigGAN

Class conditional image generator

Image generatlon models has aIs become
blgger (requires 512 cores TPUv3 pod to train)

SONY

Network size (bigger)

Biggest models win in
recognition tasks

14 2019.10.30

Sony Corporation R&D Center

Batch Param (M) | Shared [Skip-z | Ortho. Itr x10° FID IS

256 64 Sl 5 SA-GAN Baseline 1000 18 6'3 52.52

512 64] X X X 1000 TTT(£1.18)
1024 | 64 X X X 1000 14 ri:tl 42)
2048 | 64 Blgger X X X 732 Bette .83)
2048 | 96 173.5 X X X 295(+18) [9.)4(:1:0 62) | 92. f)8(:l:4 27)
2048 | 96 160.6 v X X 185(£11) | 9.18(+0.13) | 94.94(£1.32)
2048 | 96 158.3 v v X 152(£T) 8.73(+0.45) | 98.76(£2.84)
2048 | 96 _ 1583 v v v 165(£13) N.8.51(+0.32) | 99.31(+2.10))
2048 | 64 71.3 v v v 37L(£T) 10.48(£0.10) | 86.90(+0.61)

Why large scale training is important? 2/2

Large dataset gives better performance Data size becomes bigger

Target task: ImageNet

90 Source task
| ImageNet (target = source) |
Instagram (940M, 1.5k tags)
Instagram (1B, 8.5k tags)
Instagram (1B, 17k tags)
Instagram (3.5B, 17k tags)

GAN progress on facial generation

80} 79.6

70+

60 -
55,2 55.6 55.8 56.0
|

2018

https://twitter.com/goodfellow ian/status/10849735962361446407s=20

ImageNet top-1 accuracy (in %)

1,000 5,000 9,000
Number of classes in target task (ImageNet)

https://research.fb.com/publications/exploring-the-limits-of-

Bigger model, dataset, and data size impose large memory and

longer training time

https://research.fb.com/publications/exploring-the-limits-of-weakly-supervised-pretraining/
https://twitter.com/goodfellow_ian/status/1084973596236144640?s=20

Large scale training: Large model execution in nnabla

Presentation only

=10 1.'D'4 16 \ 2019.10.30 Sony Corporation R&D Center

SONY

Distributed Training

SONY

Introduction of techniques for scaling up
distributed training

- toward over 100K mini-batch training —

Hisahiro SUGANUMA

Sony Corporation R&D center

Copyright 2019 Sony Corporation

Agenda

e Overview of data parallel distributed training

Problems regarding scaling up disrtibuted training

e Techniques for large scale distributed training

. Brief introduction of our new optimizer “STiLL"

e Experimental Result : ImageNet/ResNet-50 training

=10 1\.'D'¢ 19 2019.10.30 Copyright 2019 Sony Corporation

Brief introduction of our recent activities ImageNet/ResNet-50 Training in 224 Seconds

o We a re St u dyi n g d ist ri b uted t ra i n i n g to t ra i n Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U-chupala,

Yoshiki Tanaka and Yuichi Kageyama
Sony Corporation

{Hiroaki.Mikami, Hisahiro.Suganuma, Pongsakorn.Uchupala,
Yoshiki.Tanaka, Yuichi.Kageyama}@sony.com

e And to benchmark our framework, we have Abstract

. . Scaling the distributed deep learning to a massive GPU cluster level is
I mage N et/ReS N et_SO that contain th e time « challenging due to the instability of the large mini-batch training and the
overhead of the gradient synchronization. We address the instability of the
large mini-batch training with batch size control. We address the overhead
. . . of the gradient synchronization with 2D-Torus all-reduce. Specifically,
techniques for large batch training. S ool ooy iy S i By gl 0 e
series of collective operation in different orientations. These two techniques
are implemented with Neural Network Libraries (NNL) ' . We have
successfully trained |m:1chcl;'Rccht—5(] in 224 seconds without significant
accuracy loss on ABCI™ cluster.

The time of ImageNet/Re!

L=

Bl Time to train [sec] ===batch size

700 0 eat be=aak |224 sec/bs=34 68k '

500

[o)]
o
o

65536

'112 sec/bs=54k H 68 sec/bs=96k ' 32768
I S

Jul. 2018 Oct. 2018 Feb.2019 Oct. 2019
Publish date

o
o

Batch size

o
o

Time to train [sec]

P N Wb
=
o

o
o

o

=10 1\.'D'¢ 20 2019.10.30 Copyright 2019 Sony Corporation

SONY

Brief overview of Distributed Training

Paradlgms of distributed training : Data and Model Parallelism

Data parallelism Model parallelism
- : Train dat
Train data . : rain data | GPU |
: e
model : model g0

Each GPU has the same model weight and
training with sharded data.

Each GPU has a different part of model weight.

Data parallelism : Model parallelism
Pros : - Itis simple to scale out the number of workers. = - It can deal with very big model like “Transformer”.
Cons = Increasing batch-size make optimization difficult - Suffering from computational inefficiency. (Recently it is
: significantly. = getting more better.)

Scope of my talk

2019.10.30 Copyright 2019 Sony Corporation

DNN Training on single GPU.

 DNN Training basically employs “Mini-batch training”

* Training consist of fetch data, forward, backward and update weights.

e |terative training with each split dataset “mini-batch” to optimize DNN parameters(weight)

gradually.
One iteration in the training
Fetch data\ Forward A Backward Update
Input . < > >| L /> Output
Dataset — — YT
swset [) [Training > N S B
DNN Model 532~ Trained Model

mini-batch training with a single GPU

e——GPu

=10 1\.'D'¢ 23 2019.10.30 Copyright 2019 Sony Corporation

Data-parallel distributed DNN Training

Data parallel training needs to synchronize the gradients among the all workers before it

updates the weights since it must maintain the consistency of the model.

Synchronization is the obviously overhead to the time of training.

Output

Training>

sync > Update >

Fetch data’ Forward | Backward
& 4 7 Y
Input N N
Dataset i‘ Training A sync> Update} Traininc_l>' """
DNN Model %828 -

mini-batch training for each GPU

iaining SN
training _“=o Ml

GPU

GPU m
training gpy @

GPU

24 ‘ 2019.10.30

GPU

GPU training
GPU

Y
GPU parameters
Gpu training
GPU

Copyright 2019 Sony Corporation

parameters

B

N/W

gradient-sync inter-GPU/internode

N/W parameters

parameters

-

Trained Model

SONY

Problems regarding large scale training,
and how do we solve them ?

Problems of distributed large-batch training.

1. To achieve convergence with very small number of update steps

e The larger the mini-batch size is, the more number of GPUs we can use.

e However, larger mini-batch size also makes it more difficult for convergence.

Mini-batch size will be N-times size, if using N GPUs.
The point is developing the way to train even with large mini-batch size.

Out of scope in this talk

=10 1\.'D'¢ 26 2019.10.30 Copyright 2019 Sony Corporation

Convergence degradation in large-scale distributed DNN Training

» Mini-batch size is also increased by a multiple of the number of GPUs.
With SGD, it is hard to train DNN with large batch-size because ...

1.The number of training updates decreases

(ec1/#tworkers)
w : Weights
B E“e‘;‘r‘mﬁ?fl‘t?“ 1 worker 2 workers
t+1 _ _ — —
witl =yt B, Z Vi(x;,w witl =yt 2|B1 Z Vi(x;,w

lEBl Xi EBZ

#steps is halved.

Example: optimization in 2-dimension.

SONY

27 ‘ 2019.10.30 Copyright 2019 Sony Corporation

2. Easy to converge into sharp minima

Training Function

! Testing Function

Flat Minimum Sharp Minimum

% N. S. Keskar et al. “On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima” ICLR 2017

Real world approaches to scale batch-size.

1. Tuning hyperparameters on SGD

Many techniques were proposed.
E.g. “Learning rate warmup”, “LARS”, “LAMB”, ...etc.
We employ this way for several reasons. Mainly we consider that SGD to train DNN is well-

studied and we can use more wisdom of the past researches

2. Using second or higher order optimization like “Newton’s method”

SONY

They could optimize with smaller steps without sharp minima. But most of them need enormous
computing resource due to using hessian.

Recently proposed approximation have made us optimize DNN in real.

28 2019.10.30 Copyright 2019 Sony Corporation

Overview of common techniques for large batch training

Learning rate warmup* Label Smoothing™**
- Linearly scaling up LR in several epochs. - Smoothing i-th label of Softmax output g
(0<e<1, Kisthe number of classes.)
$0s -

202 1—¢ ifi =y,
Ligl [R — %=k _ (4)
%% 20 Eggc.h'”sb“"tbé_ 120 :/(C—1) otherwise,
Warmipg up LR. (a) Learning Rate Schedule *** C. Szegedy et al Rethinking the Inception Architecture for Computer Vision
(arxiv.org/abs/1512.00567)
LARS optimizer** Zero-y-init
- Layer-wise Adaptive LR Scaling with the ratio of - Initilizing y of batchnorm in residual path to O.
weights and grads.
ant
)\f =7 ¢ | w ||
HVL('H.-‘I)H +Bx«|tl 0000 T — conv — BN — Relu
* T.He et al. Bag of Tricks for Image Classification with Convolutional Neural Networks (arxiv.org/abs/1812.01187) /I\ |n|t y = O here

** Y. you et al. Large Batch Training of Convolutional Networks (arxiv.org/abs/1708.03888)

Up to 64K mini-batch these are enough to train.
However we need another technique to increase batch-size more and more !

=10 1\.'D'¢ 29 ‘ 2019.10.30 Copyright 2019 Sony Corporation

https://arxiv.org/abs/1708.03888

STiLL : Smoothly Transition from LAMB* to LARS.

e We proposed the new optimizer “STiLL” that uses two optimizer, LAMB and LARS at

the same time.

e STiLL starts from LAMB:LARS=100:0 to update the weights, then it linearly changes
the ratio of them during warmup duration.

e After the warmup duration, it uses only LARS to update weights.

I (f(w, g,t) = update function I
| wit+1) =w()—-f(w,g,t) W= weight ::
| g = gradient I
:: f(W f) = glars (t) ¥ lrlars (t) * LARS (W’ 9, t) + Blamb (t) * lrlamb * LAMB (W» 9, t); t < Twarmup t = current step I
|\ 9 [rgrs (t) * LARS (W, g, t), t = Twarmup) Ir = learning rate ::
: Twarmup = duration of lr warmup
" I71ars (0 t Iriars (0 p = U

:: Brars (t) = lars) + - (. lars)) | B0 (t) + O1amb O =1t< Twarmup B1rs(t) = ratz.o of LARS update ::
I lrlars (Twarmup) warmup lrlars (Twarmup) \ Olamp (t) = ratio of LAMB update |

*Y.You et al, Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
https://arxiv.org/abs/1904.00962

30 ‘ 2019.10.30 Copyright 2019 Sony Corporation

Why we mixed them?

 We expected that LAMB accelerates convergence in the beginning of training and

LARS helps to get better generalization performance by combining them.

J batch training with LARS and LAMB (these cases did not converge.)

400] 1 I]
2

I LAMB is initially faster like Adam | LAMB bs=72K .

o)
o
T

n
o

N
o

Validation Accur

LARS bs=72K

LARS reaches better solution
like Momentum SGD

O

0] 10 20 30 40

20 60 70 80 90

Number of Training Epoch

=10 1\.'D'¢ 31 2019.10.30 Copyright 2019 Sony Corporation

Other Technique — Smoothout, that strengthens regularization.

e Smoothout* is one of the regularization technique proposed by W.Wen.
1. Add noise from Uniform dist. to the weights before forward computation.
2. Do forward and backward computation.
3. Sub. noise from the weights.
4. Update weights.
e “Smoothout” can avoid sharp-minima, that is more important in large-batch
training. We use this over 64K batch training.

95y 1 85

s s A+ 9 _L‘(:w: .a") [a¥a™
3 85| | | 85 '
g st I"'.C(w) | | sl |
% 75+ | | T5F |
& 1t 7 [
I—I _ |
B 651 | 6 |
g st]) |
g .' | I
S \ Flat | , ;

[~ Basis| [Averaged I I
45k = = = - - - 45k ' [' + : -
S ! : ’ S e e “W.Wen etal. SmoothOut: Smoothing Out Sharp Minima to Improve Generalization
(a) Training lggchi:cﬁm (b) Smo ﬂ;%;“ in Deep Learning https://arxiv.org/abs/1805.07898

=10 1\.'D'¢ 32 2019.10.30 Copyright 2019 Sony Corporation

https://arxiv.org/abs/1805.07898

SONY

Experiments

Experiments(1): Performance comparison with LARS, LAMB and STiLL

e Firstly, we conducted ImageNet/ResNet-50 training while changing optimizers,
“LAMB”, “LARS” and “STiLL”, and increasing batch-size from 72K to 96K.

e STiLL outperforms “LAMB” and “LARS” in the final validation accuracy.

Training curve of LAMB, LARS and STilLL Top-1 accuracy of ImageNet/ResNet-50

80 model after training for 90 epochs
_ 70
£ 60 Mini-Batch Sizel YL LARS I STILL
[8) 50 i
§ 0 72K | 709% o | 76.1%
<
3 gg BS=72K vanilla LAMB ——— 80K s NA ! 75.1% ! 75.9%
e BS=72K vanilla LARS —— I l I

13 | BS=72K STiLL —— 96K s N/A 1 N/A g /3:3%

0 10 20 30 40 50 60 70 80 90
#epoch

=10 1\.'D'¢ 34 2019.10.30 Copyright 2019 Sony Corporation

Experiments(2): Performance of NNL in ABCI.

 We evaluated wallclock time to train for 90 epochs and convergence accuracy with

STIiLL in ABCI.
- Settings
Batch size 64K, 80K, 96K
STiLLs Initial/MAX LR Init: 1.36(LARS)/0.0012(LAMB), Max: 26.1
LARS Momentum 0.955
Warmup/LR Decay Warmup:25epoch, and then poly decay.
Label-smoothing a 0.1
Weight decay 8e-5
- Results
#GPU__| Wallclock
64K 90 2048 97 sec 76.13 %
80K 90 2560 79.7sec 75.93%
96K 90 3072 67.65sec 75.46 %

- Training curve

80

5)
70t
SN
g0
Q55

@

550 -

240 R
=35}
O30t
4

© 25}
ool

T |
>15
10k

bs=64K —— |
bs=80k ——
]]]] Pszggk]]

20 30 40 50 60 70 80 90
Number of Training Epoch

=10 1\.'D'¢ 35 ‘ 2019.10.30 Copyright 2019 Sony Corporation

Experiments (3): Training longer epochs could give better performance

e Then we made extra experiments to see if the model get better generalization
performance by training longer epochs.
 Inthe result, the model could reach good solution even over 100K batch training.

- Training curve

- Settings -

- Use the same settings as the previous exp. o
'_‘65 -
'—60 -
055 -
- Results Ssof
el
Qao}
- #GPU | Acc
3072 76.19% ool

>15r _

0 10+ bs=96K 110epoch
128K 150 4096 76.12 % ol | | bs=128k 150epoch |
0 0 20 40 60 80 100 120 140
Number of Training Epoch

=10 1\.'D'¢ 36 2019.10.30 Copyright 2019 Sony Corporation

Summary

e We proposed the new optimizer “STiLL” for large-scale training.

e Then empirically showed that “STiLL” outperforms “LARS” and “LAMB” in Image-
classification task.

 Also we succeeded to train with 128K batch, however even longer epoch we need
now.

=10 1\.'D'¢ 37 2019.10.30 Copyright 2019 Sony Corporation

Question?

=10 1\.'D'¢ 38 2019.10.30 Copyright 2019 Sony Corporation

SONY is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.

	スライド番号 1
	Agenda
	スライド番号 3
	Sony’s Product
	Software 2.0
	Sony's deep learning software�
	NNC demo
	スライド番号 8
	AI Bridging Cloud Infrastructure (ABCI)
	Neural Network Libraries
	Easy network definition
	nnabla-examples: A bunch of SoTA training scripts
	スライド番号 13
	Why large scale training is important? 1/2
	Why large scale training is important? 2/2
	Large scale training: Large model execution in nnabla
	スライド番号 17
	スライド番号 18
	Agenda
	Brief introduction of our recent activities
	スライド番号 21
	Paradigms of distributed training : Data and Model Parallelism
	DNN Training on single GPU.
	Data-parallel distributed DNN Training
	スライド番号 25
	Problems of distributed large-batch training.
	Convergence degradation in large-scale distributed DNN Training
	Real world approaches to scale batch-size.
	Overview of common techniques for large batch training
	STiLL : Smoothly Transition from LAMB* to LARS.
	Why we mixed them?
	Other Technique – Smoothout, that strengthens regularization.
	スライド番号 33
	Experiments(1): Performance comparison with LARS, LAMB and STiLL
	Experiments(2): Performance of NNL in ABCI.
	Experiments (3): Training longer epochs could give better performance
	Summary
	Question?
	スライド番号 39

