
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Resilience in Parallel Programming
Environments

Christian Engelmann (ORNL)
Geoffroy R. Vallée (Sylabs, Inc)
Swaroop Pophale (ORNL)

Contact: engelmannc@ornl.gov

Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory

22

Background

• Resilience is a key challenge in extreme-scale computing
– Less reliable components
– More components
– More dependencies

• Heterogeneity adds significant complexity to the extreme-scale
hardware/software ecosystem
– No fine-grain protection domains & resilience at the component level
– Coarse-grain checkpoint/restart at the job level is standard

33

Problem Statement

• The burden for providing resilience is currently on the user
– Global checkpoint/restart is currently the only practical solution

– Fault-tolerant MPI is experimental, low-level and maybe in the standard by 2024 at
the earliest

– There are some local checkpoint/restart libraries for accelerators

• A programming model needs to provide resilience with an easy to use
interface to permit wide-spread adoption
– Have clear error & failure models and corresponding abstractions

– Hide the complexities of protection domains and resilience strategies
– Offer efficient resilience with little programming burden

44

Proposed Solution

• Offer an easy to use and generic Quality of Service (QoS) interface for
resilience
– Use abstract, easy to understand, terms and programming constructs

– Enable users to define their resilience needs

• Establish QoS contracts between the application and the system
– Offer resilience QoS contract options for accelerator offload
– Report contract breaches back to the application

• Embed QoS interfaces, coordination mechanisms and resilience strategies
in the OpenMP language and runtime
– An OpenMP that is resilient to accelerator errors/failures: rOpenMP

55

The Quality of Service (QoS) Approach

• Allow application developers to specify their resilience strategy
without focusing on the implementation details

• Create a contract that maps application resilience
requirements to the underlying hardware/software capabilities

• Specify the resilience strategy without focusing on
implementation details

66

OpenMP QoS language extensions

• QoS contract: A set of QoS parameters that reflect resilience
requirements by identifying resilience strategies

• QoS parameters: Generic get/set interface, using: (1) key/value
pairs, (2) bounded values and (3) ranges of values

• QoS parameter scope: Code block and related data

• QoS classes: Offer coherent sets of parameters that achieve
popular resilience strategies

77

OpenMP QoS language extensions

#pragma omp qoskv resilience (TASK_REDUNDANCY, BOOL, TRUE)

#pragma omp qoskv resilience (TASK_REDUNDANCY_FACTOR, INT, 3)

#pragma omp qoskv resilience (TASK_REDUNDANCY_MAJORITY, INT, 2)

#pragma omp qoskv resilience (TASK_REDUNDANCY_COMPARE, BOOL, TRUE)

{

#pragma omp target ...

...

}

88

OpenMP QoS language extensions: QoS classes

#pragma omp qoskv resilience (TASK_TRIPLE_REDUNDANCY, BOOL, TRUE)

{

#pragma omp target ...

...

}

99

PMIx Server/Runtime

ORQOS
library/runtime

PMIx_Init(…)
PMIx_Get(…)
PMIx_Notify(...)

OpenMP
library/runtime

PMIx_Init(…)
PMIx_Get(…)
PMIx_Notify(...)

ELF Binary

Run-tim
e

#pragma omp qoskv (…)
{

…
}

PMIx_Init(…)
PMIx_Put(…)
...

Intermediate code (clang + LLVM)

OpenMP code

Generated code

PMIx_Init(…)
PMIx_Put(…)
...

Generate binary (LLVM)

Com
pile-tim

e

Compile-time Workflow and Run-time Interactions of the
Implemented Prototype using LLVM 7

1010

Resilience Strategies

• Error and failure detection and notification
– Detections by the device/OS must be reported to the OpenMP runtime

• Language feature (such as a callback) for application feedback is needed to
potentially decide on the course of action (such as if an error is acceptable or not)

– Detections by the application must also be reported to the runtime
• Language feature for raising notifications to the OpenMP runtime is needed as well

1111

Resilience Strategies

• Fail-fast and graceful shutdown
– Detection, notification and controlled termination as soon as possible
– Graceful shutdown avoids error propagation and failure cascades
– Also enables proper error/failure reporting and root-cause analysis
– Should be the default behavior of OpenMP runtime and applications

1212

Resilience Strategies

• Graceful degradation
– Continue operation after an error or failure at the cost of performance

or correctness that is deemed acceptable
– May mean to continue with less or slower devices
– Requires runtime support to dynamically remove devices

• Rollback recovery
– This we know how to do: Save task data and re-execute if needed

• VOCL-FT has done this for OpenCL-accelerated applications
– Language feature to limit the maximum number of rollbacks needed

1313

Resilience Strategies

• Redundancy
– Dual- or triple-redundant execution of tasks
– Language feature to specify redundancy and type needed
– Output comparison for error detection and masking

• Redundancy in time
– Execute the same task at the same time on multiple devices

• Redundancy in space
– Execute the same task on the same device multiple times

1414

Current Status

✓ Created OpenMP QoS language extensions to describe resilience needs

✓ Developed OpenMP runtime extensions to meet resilience needs

✓ Designed resilience strategies and corresponding protection domains

Christian Engelmann, Geoffroy R. Vallee, and Swaroop Pophale. Concepts for OpenMP target offload
resilience. 15th International Workshop on OpenMP (IWOMP) 2019, Auckland, New Zealand,
September 11-13, 2019. doi: 10.1007/978-3-030-28596-8 6.

1515

Future Work

→Create QoS policies to meet application needs with strategies

→Create the final prototype and demonstrate its capabilities

• Expand the QoS concept to
– Other OpenMP features
– Performance, resilience and energy trade-off
– MPI and MPI+OpenMP

• Create intent-based QoS extensions to be architecture/strategy agnostic

• Develop an adaptive runtime with self-awareness (AI)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Resilience in Parallel Programming
Environments

Christian Engelmann (ORNL)
Geoffroy R. Vallée (Sylabs, Inc)
Swaroop Pophale (ORNL)

Contact: engelmannc@ornl.gov

Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory

