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Theme: Chemical Properties from First Principles

• Electronic structure methods allow for a quantum mechanical 
treatment of systems, giving scientists tools to go beyond the 
technical limits of experiment in understanding the natural 
world and designing new materials. 


• A broad field with many different methods and algorithms.

• The goal of our research is to develop theoretical methods, 
numerical algorithms, and software to study the properties of 
molecules and materials from the basic laws of the universe (in 
particular: quantum mechanics).

Atomic Positions Electronic Structure 
Software System Properties
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Example Application: Bioremediation
• Bioremediation: the use of naturally 

occurring organisms to break down 
environmental pollutants.


• Example: using enzymes to degrade 
toxins, which can contaminate food 
supplies.


• Requirement 1: computational 
methods and software that can 
perform accurate calculations on such 
large systems (10,000 atoms).


• Requirement 2: methodologies that 
can extract scientific insight from 
these calculations.

Zaccaria, Marco, WD, Viviana Cristiglio, Massimo Reverberi, Laura E. Ratcliff, Takahito Nakajima, Luigi Genovese, and Babak 
Momeni. "Designing a bioremediator: mechanistic models guide cellular and molecular specialization." Current opinion in 
biotechnology 62 (2020): 98-105.
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Requirement 1: Methods for Large Systems
• One of the major computational bottlenecks for quantum chemistry 

software is computing the density matrix D from the hamiltonian H.


• This is typically done by solving an eigenvalue problem.


• HV = 𝝀V (where V is a nbasis x nelectrons matrix).


• Then compute the density matrix as D = VVT.


• Computational cost scales with the third power of the system 
size.


• Instead, we can compute the density matrix directly using the fermi 
function:


• D = 1/(eβ(H-μ) + I).


• This function here is a matrix function. Is it possible to use this 
framework to reduce the computational cost?
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Introduction to Matrix Functions
• Simple definition: We are all familiar with functions of a single 

variable f(x). In the matrix function case, just replace the 
variable x with a matrix A.

Standard Function Matrix Function Interpretation

f(x) = x2 f(A) = A2 Matrix Product

f(x) = 1/x f(A) = A-1 Matrix Inverse

f(x) = ex f(A) = eA Matrix Differential Equation

f(x) = sign(x) f(A) = sign(A) Projection on to Subspace

Higham, Nicholas J. Functions of matrices: theory and computation. Vol. 104. Siam, 2008.

• Matrix functions have many different applications including 
solving differential equations and the study of complex 
networks.
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Motivating Matrices
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• In many domains, the problem of interest can be represented using a 
sparse, hermitian matrix.


• Under certain conditions, not only is the matrix A sparse, but also some 
matrix functions f(A) are sparse.


• Estrada matrix exponential eβA contains a scaling factor which might be 
interpreted as a unit of edge weight.


• For certain values of β, the matrix exponential of small world matrices is 
also sparse. 
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Motivating Matrices - Chemistry
• For insulating systems (and metals at high temperature), it is 

known that the density matrix is sparse when represented in a 
localized basis.


• Example: the Hamiltonian and Density Matrix of 1920 water 
molecules computed using BigDFT.

Density MatrixHamiltonian
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Sparsity Aware Matrix Function Calculation
• From the list of methods for computing matrix functions, we will 

select calculations based on matrix polynomials.


• e.g. Chebyshev polynomials: f(A) ≅ ∑ciTi(x).


• T0(A) = I             T2(A) = 2A2 - I        T4(A) = 8A4 - 8A2 + I


• T1(A) = A            T3(A) = 4A3 - 3A


• Computing a matrix polynomial requires only two core routines: 
matrix addition, matrix multiplication.


• Easy to parallelize.


• Many functions can be tuned through just two routines.


• In the case of sparse matrices, we replace these kernels with 
sparse matrix addition, and sparse matrix multiplication.
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Parallel Implementation: Topological Aware
• Approach: a three dimensional data distribution maps well to 

the high level 6D Tofu Network topology of K/Fugaku.


• Map a 2D matrix onto a 3D topology, and exploit the extra 3 
dimensions for efficient collective communication.


• For each dimension, we are free to choose whether to partition 
or replicate data structures.
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Parallel Implementation: Matrix Multiplication
• Core routine of computing matrix powers. 


• Overdecomposition of the matrix enables strong scaling performance.


• Gather+Reduce implemented as collective communication.
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[1] Solomonik, Edgar, and James Demmel. "Communication-optimal parallel 2.5 D matrix multiplication and LU factorization algorithms." In European Conference on Parallel Processing, 
pp. 90-109. Springer, Berlin, Heidelberg, 2011.
[2] Dawson, William, and Takahito Nakajima. "Massively parallel sparse matrix function calculations with NTPoly." Computer Physics Communications 225 (2018): 154-165.
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Parallel Implementation: Thread Parallel
• OpenMP loop parallelism doesn’t work well with overlapping 

communication. Instead we use OpenMP task framework.


• Creating a task manager, and dependency graph.


• Block levels tasks help mitigate load imbalance from sparse 
matrix and communication in different directions.

Local Gather Row Ai Transpose Column Bj

Local Gather Column BjGlobal Gather Row Ai

Global Gather Column Bj

Compute Block Cij

Sum Z Direction Cij

Transpose Column Bk

Local Gather Column Bk

Global Gather Column Bk

Compute Block Cik

Sum Z Direction Cik

Transpose Row Ai
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NTPoly Features
• General Polynomials 
• Standard Polynomials

• Chebyshev Polynomials

• Hermite Polynomials


• Transcendental Functions 
• Trigonometric Functions

• Exponential and Logarithm


• Matrix Roots 
• Square Root and Inverse 

Square Root

• Matrix pth Root and Inverse 

pth root

• Matrix Inverse (and Moore-

Penrose Inverse)


• Sign Function/Polar 
Decomposition


• Quantum Chemistry 
• Density Matrix Purification

• Chemical Potential 

Calculation

• Density Matrix Extrapolation


• Other 
• Parallel File I/O

• MIT License

• Fortran/C/C++/Python 

Interface

• Automatic data redistribution

• Real and Complex Matrices

WD, and Takahito Nakajima. "Massively parallel sparse matrix function calculations with NTPoly." Computer Physics Communications 225 (2018): 154-165.
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Performance: Quantum Chemistry
• Standard eigensolvers can make limited use of the sparsity of a 

matrix, but will be outperform by matrix function based 
approaches.


• Calculation of water clusters of various sizes, 6-31G basis set, 
using the TRS2 density matrix method to approximate the fermi 
function.
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Going Beyond Quantum Chemistry
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• By building a general framework, we can apply NTPoly to many different 
fields.


• Example: computing the matrix exponential eβA to study social networks.

Estrada, Ernesto, Naomichi Hatano, and Michele Benzi. "The physics of communicability in complex networks." 
Physics reports 514, no. 3 (2012): 89-119.
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Example: The Resilience of Social Networks
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• Network Resiliency calculations:


• Data Set: Israeli Social Network “TheMarker Cafe”


• Nodes: 69413. Sparsity: 0.04%. 


• Procedure:


• Remove a node from the graph


• Random Node


• Node with largest degree


• Compute the matrix exponential


• Compute the sparsity


• Repeat

WD, and Takahito Nakajima. "Massively parallel sparse matrix function calculations with NTPoly." Computer Physics Communications 225 (2018): 154-165.
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Conclusion
• Electronic structure calculations enable us to predict the 

properties of molecules using the laws of quantum mechanics.

• Using the world’s largest supercomputers to push quantum 

mechanical methods into the 10,000 atom regime, enabling 
calculations of previously inaccessible systems and properties.


• Use of matrix functions to enable large scale quantum chemistry 
calculations.


• A highly scalable library that can be applied to many different 
disciplines.


• Complexity reduction approach to fragment large systems.


• NTPoly: https://github.com/william-dawson/NTPoly


• BigDFT: https://gitlab.com/l_sim/bigdft-suite


• PyBigDFT: https://bigdft-suite.readthedocs.io/projects/PyBigDFT/

https://github.com/william-dawson/NTPoly
https://gitlab.com/l_sim/bigdft-suite
https://bigdft-suite.readthedocs.io/projects/PyBigDFT/

