Post-K: A Game Changing Supercomputer for Convergence of HPC and Big Data / AI

Satoshi Matsuoka Director, Riken Center for Computational Science / Professor, Tokyo Institute of Technology

ADAC Presentation @ ORNL

20190325

Apr 1 2018 Became Director of Riken-CCS: Science, of Computing, by Computing, and for Computing

Riken Center for Computational Science (R-CCS)

World Leading HPC Research, active collaborations w/Universities, national labs, & Industry

Sci. of Computing

Foundational research on computing in high performance for K, Post-K, and beyond towards the "Post-Moore" era, including future high performance architectures, new computing and programming models, system software, large scale systems modeling, big data analytics, and scalable artificial intelligence / machine learning Sci. by Computing

Breakthrough Science & Technology using high performance computing capabilities of K, Post-K and beyond to address the issues of high public concern, in areas such as life sciences, climate & environment, disaster prediction & prevention, advanced manufacturing, applications of machine learning for Society 5.0.

Post-K: The Game Changer

6

- 1. Heritage of the K-Computer, HP in simulation via extensive Co-Design
 - High performance: up to x100 performance of K in real applications
- Multitudes of Scientific Breakthroughs via Post-K application programs
- Simultaneous high performance and ease-of-programming
- 2. New Technology Innovations of Post-K
 High Performance, esp. via high memory BW
 Performance boost by "factors" c.f. mainstream CPUs in many
 HPC & Society5.0 apps via <u>BW & Vector acceleration</u>
- Very Green e.g. extreme power efficiency Ultra Power efficient design & various power control knobs
- Arm Global Ecosystem & SVE contribution Top CPU in ARM Ecosystem of 21 billion chips/year, SVE codesign and world's first implementation by Fujitsu
- High Perf. on Society5.0 apps incl. AI Architectural features for high perf on Society 5.0 apps based on Big Data, AI/ML, CAE/EDA, Blockchain security, etc.

Global leadership not just in the machine & apps, but as cutting edge IT

Technology not just limited to Post-K, but into societal IT infrastructures e.g. Clouds

Post K A64fx Processor is…

• an Many-Core ARM CPU…

- 48 compute cores + 2 or 4 assistant (OS) cores
- Brand new core design
- Near Xeon-Class Integer performance core
- ARM V8 --- 64bit ARM ecosystem
- Tofu-D + PCIe 3 external connection
- ---but also an accelerated GPU-like processor
 - SVE 512 bit vector extensions (ARM & Fujitsu)
 - Integer (1, 2, 4, 8 bytes) + Float (16, 32, 64 bytes)
 - Cache + scratchpad-like local memory (sector cache)
 - HBM2 on package memory Massive Mem BW (Bytes/DPF ~0.4)
 - Streaming memory access, strided access, scatter/gather etc.
 - Intra-chip barrier synch. and other memory enhancing features

2001873 GPU-like High performance in HPC, AI/Big Data, Auto Driving…

"Post-K" Chronology

(Disclaimer: below includes speculative schedules and subject to change)

- 1H2019 "Post-K" manufacturing budget approval by the Diet, actual manufacturing commences
- Apr 2019 R-CCS lead research activities on next-gen architectures will commence => whitepaper to be written by Winter
- Aug 2019 End of K-Computer operations
- 4Q2019~1Q2020 "Post-K" installation starts
- 1H2020 "Post-K" preproduction operation starts
- 2020~2021 "Post-K" production operation starts (hopefully)
- And of course we move on…

Watch for announcements on "Post-K" technology commercialization by Fujitsu and its partner vendors RSN

ARM for HPC - Co-design Opportunities, ISC 2018 BOF June 25, 2018

Co-design for Post-K

(slides by Mitsuhisa Sato Team Leader of Architecture Development Team) Deputy project leader, FLAGSHIP 2020 project Deputy Director, RIKEN Center for Computational Science (R-CCS)

Analysis of applications to devise the most efficient solutions

Started in 2009 (before K)

Richard F. BARRETT, et.al. "On the Role of Co-design in High Performa nce Computing", *Transition of HPC Towards Exascale Computing*

Issues and opportunities to exploit

Co-design from Apps to Architecture

Architectural Parameters to be determined

- #SIMD, SIMD length, #core, #NUMA node, O3 resources, specialized hardware
- cache (size and bandwidth), memory technologies
- Chip die-size, power consumption
- Interconnect

R

- We have selected a set of target applications
- Performance estimation tool
 - Performance projection using Fujitsu FX100 execution profile to a set of arch. parameters.
- Co-design Methodology (at early design phase)
 - 1. Setting set of system parameters
 - 2. Tuning target applications under the system parameters
 - 3. Evaluating execution time using prediction tools
 - 4. Identifying hardware bottlenecks and changing the set of system parameters

Target applications representatives of almost all our applications in terms of computational methods and communication patterns in order to design architectural features.

		Target Application								
	Program	Brief description								
1	GENESIS	MD for proteins								
2	Genomon	Genome processing (Genome alignment)								
3	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)								
4	NICAM+LETK	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)								
5	NTChem	molecular electronic (structure calculation)								
6	FFB	Large Eddy Simulation (unstructured grid)								
7	RSDFT	an ab-initio program (density functional theory)								
8	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)								
9	CCS-QCD	Lattice QCD simulation (structured grid Monte Carlo)								

Genesis MD: proteins in a cell environment R אוא

Protein simulation before K

■ Simulation of a protein in isolation

Folding simulation of Villin, a small protein with 36 amino acids

Protein simulation with K

all atom simulation of a cell interior cytoplasm of Mycoplasma genitalium

NICAM: Global Climate Simulation

R

אוא

- Global cloud resolving model with 0.87 km-mesh which allows resolution of cumulus clouds
- Month-long forecasts of Madden-Julian oscillations in the tropics is realized.

Miyamoto et al (2013), Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944.

Heart Simulator

Multi-scale simulator of heart starting from molecules and building up cells, tissues, and heart

- Heartbeat, blood ejection, coronary circulation are simulated consistently.
- Applications explored
 - congenital heart diseases
 - Screening for drug-induced irregular heartbeat risk

UT-Heart, Inc., Fujitsu Limited

Co-design of Apps for Architecture

• Tools for performance tuning

- Performance estimation tool
 - Performance projection using Fujitsu FX100 execution profile
 - Gives "target" performance
- Post-K processor simulator
 - Based on gem5, O3, cycle-level simulation
 - Very slow, so limited to kernel-level evaluation

Co-design of apps

- 1. Estimate "target" performance using performance estimation tool
- 2. Extract kernel code for simulator
- 3. Measure exec time using simulator
- 4. Feed-back to code optimization
- 5. Feed-back to compiler

Circuits & Design

Analysis of applications to devise

lssues and opportunities to exploit

ARM for HPC - Co-design Opportunities

- ARM SVE Vector Length Agnostic feature is very interesting, since we can examine vector performance using the same binary.
- We have investigated how to improve the performance of SVE keeping hardware-resource the same. (in "Rev-A" paper)
 - ex. "512 bits SVE x 2 pipes" vs. "1024 bits SVE x 1 pipe"
 - Evaluation of Performance and Power (in "coolchips" paper) by using our gem-5 simulator (with "<u>white</u>" parameter) and ARM compiler.
 - Conclusion: Wide vector size over FPU element size will improve performance if there are enough rename registers and the utilization of FPU has room for improvement.

Note that these researches are not relevant to <u>"post-K" architecture.</u>

- Y. Kodama, T. Oajima and M. Sato. "Preliminary Performance Evaluation of Application Kernels Using ARM SVE with Multiple Vector Lengths", In Re-Emergence of Vector Architectures Workshop (Rev-A) in 2017 IEEE International Conference on Cluster Computing, pp. 677-684, Sep. 2017.
- T. Odajima, Y. Kodama and M. Sato, "Power Performance Analysis of ARM Scalable Vector Extension", In IEEE Symposium on Low-Power and High-Speed Chips and Systems (COOL Chips 21), Apr. 2018

A64FX: Summary

Arm SVE, high performance and high efficiency

- DP performance 2.7+ TFLOPS, >90%@DGEMM
- Memory BW 1024 GB/s, >80%@STREAM Triad

CMG : Core Memory Group NOC : Network on Chip

	A64FX		
ISA (Base, extension)	Armv8.2-A, SVE		
Process technology	7 nm		
Peak DP performance	2.7+ TFLOPS		
SIMD width	512-bit		
# of cores 48 + 4			
Memory capacity	32 GiB (HBM2 x4)		
Memory peak bandwidth	1024 GB/s		
PCle Gen3 16 lanes			
High speed interconnect	TofuD integrated		

SCAsia2019, March 12

A64FX technologies: Core performance

High calc. throughput of Fujitsu's original CPU core w/ SVE

512-bit wide SIMD x 2 pipelines and new integer functions

A64FX technologies: Scalable architecture

- Core Memory Group (CMG)
 - 12 compute cores for computing and an assistant core for OS daemon, I/O, etc.
 - Shared L2 cache
 - Dedicated memory controller

- Four CMGs maintain cache coherence w/ on-chip directory
 - Threads binding within a CMG allows linear speed up of cores' performance

A64FX chip configuration

High Bandwidth

Extremely high bandwidth in caches and memory

 A64FX has out-of-order mechanisms in cores, caches and memory controllers. It maximizes the capability of each layer's bandwidth

A64FX: L1D cache uncompromised BW

128B/cycle sustained BW even for unaligned SIMD load

 "Combined Gather" doubles gather (indirect) load's data throughput, when target elements are within a "128-byte aligned block" for a pair of two regs, even & odd

A64FX: Power monitor and analyzer

Energy monitor (per chip)

- Node power via Power API*1 (~msec)
- Averaged power of a node, CMG (cores, L2 cache, memory) etc.

- Energy analyzer (per core)
 - Power profiler via PAPI*2 (~nsec)
 - Fine grained power analysis of a core, L2 cache, and memory

*2: Performance Application Programming Interface

*1: Sandia National Laboratory

A64FX: Power Knobs to reduce power consumption

- "Power knob" limits units' activity via user APIs
- Performance/W can be optimized by utilizing Power knobs, Energy monitor & analyzer

Preliminary performance evaluation results **FUJITS**

Over 2.5x faster in HPC & AI benchmarks than SPARC64 XIfx

Post-K A64fx A0 (ES) performance

		Performance / CPU						mance (HPC)
	Peak TF (DFP)	Peak Mem. BW	Stream Triad	Theor etical B/F	DGEMM Efficiency	Linpack Efficiency	GF/W	Network BW Per Chip
Post-K A64fx (A0 Eng. Sample)	2.764/ 3.072	1024GB/s	840GB/s	0.37/ 0.33	94 %	87.7 %	>15	TOFU-D 40.8GB/s (6.8x 6)
Intel KNL	3.0464	600GB/s	490GB/s	0.20	66%	54.4 %	4.9	12.5 GB/s
Intel Skylake	1.6128	127.8GB/s	97 GB/s	0.08	80 %	66.7 %	4.5	6.2GB/s
NVIDIA V100 (DGX-2)	7.8	900 GB/s	855GB/s	0.12		76 %	15.113	160GB/s 6.2GB/s

使用コード: NAS Parallel Benchmarks Ver. 3.3.1 OpenMP版 クラスC

22

Fiber (Post-K) MiniApp on FX100 Fujitsu

[Slide by Ikuo Miyoshi, Fujitsu, SSKen2015]

アプリ名	問題サイズ	評価区間	スレッ (左からF)	ッド数 × プロt ×10、FX100	2ス数 、Haswell)
CCS QCD	32 × 32 × 32 × 32	BiCGStab	16t × 2p	32t × 1p	16t × 2p
NICAM-DC-MINI	gl05rl00z80pe10	Dynamics		3t × 10p	
FFB-MINI	1,048,576要素	MAIN_LOOP	1t×32p	8t×4p	1t×32p
FFVC-MINI	$256 \times 256 \times 256$	Total	4t ×	< 8p	16t × 2p
NTChem-MINI	taxol	RIMP2_Driver	1t×32p	16t × 2p	2t × 16p

Post-K performance evaluation

Himeno Benchmark (Fortran90)

Post-K Chassis, PCB (w/DLC), and CPU Package

CMU: CPU Memory Unit

TOFU-D 6D Mesh/Torus Network

- Six coordinate axes: X, Y, Z, A, B, C
 - X, Y, Z: the size varies according to the system configuration
 - A, B, C: the size is fixed to $2 \times 3 \times 2$
- Tofu stands for "torus fusion": (X, Y, Z)×(A, B, C)

FUITSU

A64FX: Tofu interconnect D

Integrated w/ rich resources

- Increased TNIs achieves higher injection BW & flexible comm. patterns
- Increased barrier resources allow flexible collective comm. algorithms
- Memory bypassing achieves low latency
 - Direct descriptor & cache injection

	TofuD spec	
Port bandwidth	6.8 GB/s	
Injection bandwidth	width 40.8 GB/s	
	Measured	
Put throughput	6.35 GB/s	
Ping-pong latency	0.49~0.54 μs	

Put Latencies

- 8B Put transfer between nodes on the same board
 - The low-latency features were used

	Communication settings		Latency
Tofu1	Descriptor on main memory		1.15 µs
	Direct Descriptor		0.91 µs
Tofu2	Cache injection OFF		0.87 µs
	Cache injection ON	ມເສັ	0.71 µs
TofuD	To/From far CMGs		0.54 µs
	To/From near CMGs	aha.	0.49 µs

- Tofu2 reduced the Put latency by 0.20 µs from that of Tofu1
 - The cache injection feature contributed to this reduction
- TofuD reduced the Put latency by 0.22 µs from that of Tofu2

Injection Rates per Node

- Simultaneous Put transfers to multiple nearest-neighbor nodes
 - Tofu1 and Tofu2 used 4 TNIs, and TofuD used 6 TNIs

	Injection rate	Efficiency
Tofu1 (K)	15.0 GB/s	77 %
Tofu1 (FX10)	17.6 GB/s	88 %
Tofu2	45.8 GB/s	92 %
TofuD	38.1 GB/s	93 %

- The injection rate of TofuD was approximately 83% that of Tofu2
- The efficiencies of Tofu1 were lower than 90%
 - Because of a bottleneck in the bus that connects CPU and ICC
- The efficiencies of Tofu2 and TofuD exceeded 90 %
 - Integration into the processor chip removed the bottleneck

Packaging – Rack Structure of Post-K

Rack

- 8 shelves
- 192 CMUs or 384 CPUs

Shelf

- 24 CMUs or 48 CPUs
- $\blacksquare X \times Y \times Z \times A \times B \times C = 1 \times 1 \times 4 \times 2 \times 3 \times 2$

Top or bottom half of rack

4 shelves

 $\blacksquare X \times Y \times Z \times A \times B \times C = 2 \times 2 \times 4 \times 2 \times 3 \times 2$

Rack

1 Peta FLOPS by K computer & Post-K

K computer

80x compute racks & 20x disk racks

Post-K

1x rack w/ SSDs

		K computer	Post-K
	Compute nodes	7,680(=96x80)	384
	IO nodes	4,80(=6x80)	
	Footprint (m ²)	SPARC Linux	Arm Linux
	32m	as system softv collaboration w	vare in /ith Open

Post-K system configuration

Scalable	e design		<image/>
	CPU	CMU E	BoB Shelf Rack System
	Unit	# of nodes	Description
	CPU	1	Single socket node with HBM2 & Tofu interconnect D
	CMU	2	CPU Memory Unit: 2x CPU
	BoB	16	Bunch of Blades: 8x CMU
	Shelf	48	3x BoB
	Rack	384	8x Shelf

SCAsia2019,

© 2019 FUJITSU

34

- Compute Node, Compute + I/O Node connected by TOFU-D
- 3-level hierarchical storage
 - 1st Layer: GFS Cache + Temp FS
 - 2nd Layer: Lustre-based GFS
 - 3rd Layer: Off-site Cloud Storage
- Full Machine Spec
 - >150,000 nodes, ~8 million High Perf. Arm v8.2 Cores
 - > 150PB/s memory BW
 - > 400 racks
 - ~40 MegaWatts Machine+IDC PUE ~ 1.1 High Pressure DLC
 - ~= 15~30 million state-of-the art competing CPU Cores for HPC workloads (both dense and sparse problems)

20018/6/26

Post-K Programming Environment

- Fortran2008 & Fortran2018 subset
- C11 & GNU and Clang extensions
- C++14 & C++17 subset and GNU and Clang extensions
- OpenMP 4.5 & OpenMP 5.0 subset
- Java
- Baralled Programmingalanguage & Domain Spengific Library provided by RIKEN
 - XcalableMP
 - FDPS (Framework for Developing Particle Simulator)
- Process/Thread Library provided by RIKEN
 - PiP (Process in Process)

- Script Languages provided by Linux distributor
 E.g., Python+NumPy, SciPy
- Communication Libraries
 - MPI 3.1 & MPI4.0 subset
 - Open MPI base (Fujitsu), MPICH (RIKEN)
 - Low-level Communication Libraries
 - uTofu (Fujitsu), LLC(RIKEN)
- File I/O Libraries provided by RIKEN
 Lustre
 - pnetCDF, DTF, FTAR
- Math Libraries
 - BLAS, LAPACK, ScaLAPACK, SSL II (Fujitsu)
 - EigenEXA, Batched BLAS (RIKEN)
- Programming Tools provided by Fujitsu
 Profiler, Debugger, GUI
- NEW: Containers (Singularity) and other Cloud APIs
- NEW: AI software stacks (w/ARM)

Post-K system software

RIKEN and Fujitsu are developing a software stack for Post-K

OSS Application Porting @ Arm HPC Users Group

(http://arm-hpc.gitlab.io/)

Application	Lang.	GCC	LLVM	Arm	Fujitsu
LAMMPS	C++	Modified	Modified	Modified	Modified
GROMACS	С	Modified	Modified	Modified	Modified
GAMESS*	Fortran	Modified	Modified	Modified	Modified
OpenFOAM	C++	Modified	Modified	Modified	Modified
NAMD	C++	Modified	Modified	Modified	Modified
WRF	Fortran	Modified	Modified	Modified	Modified
Quantum ESPRESSO	Fortran	Ok in as is	Ok in as is	Ok in as is	Modified
NWChem	Fortran	Ok in as is	Modified	Modified	Modified
ABINIT	Fortran	Modified	Modified	Modified	Modified
СР2К	Fortran	Ok in as is	Issues found	Issues found	Modified
NEST*	C++	Ok in as is	Modified	Modified	Modified
BLAST*	C++	Ok in as is	Modified	Modified	Modified

OSS Application Porting @ Arm HPC Users Group

(http://arm-hpc.gitlab.io/)

Application		Lang.	GCC	LLVM	Arm	Fujitsu	
LAMMPSC++GROMACSCGAMESS*Fortrant		C++	Modified	Modified	Modified	Modified	
		С	Modified	Modified	Modified	Modified	
		Fortran	Modified	Modified	Modified	Modified	
OpenFOAM Twelve p		elve primar	y OSS applicat	ions are listed ar	nd being tested i	n lodified	
NAMD	NAMD the Users Gr			up for each compilers, collaboratively w/ Arm			
WRF						odified	
Quantum ESPRE	Quantum ESPRESSO Fortran		Ok in as is	Ok in as is	Ok in as is	Modified	
NWChem		Fortran	Ok in as is	Modified	Modified	ongoing	
ABINIT CP2K		Fortran	Modified	Modified	Modified	Modified	
		Fortran	Ok in as is	Issues found	Issues found	ongoing	
NEST*		C++	Ok in as is	Modified	Modified	Modified	
BLAST*		C++	Ok in as is	Modified	Modified	Modified	

Massive Scale Deep Learning on Post-K R

Post-K Processor

- High perf FP16&Int8
- High mem BW for convolution
- Built-in scalable Tofu network

High Performance DNN Convolution

Unprecedened DL scalability

High Performance and Ultra-Scalable Network for massive scaling model & data parallelism

Low Precision ALU + High Memory Bandwi Unprecedented Scalability of Data/ dth + Advanced Combining of Convolution Algorithms (FFT+Winograd+GEMM)

"Post-K" Naming

until April 8, 2019 5 pm JST

- Foreign submissions welcome
 - Requirements for the post-K's name are:
 - The name should preferably express the idea that RIKEN is a world-class research institute operating a state-of-the-art supercomputer.
 - The name should be attractive not only to Japanese speakers but to people around the world.

Call for proposals for the name of the post-K

The RIKEN Center for Computational Science (R-CCS) is calling for proposals for the name of the successor to the K computer (often referred to as the post-K computer), which has been under development with the target to start providing shared use service around the year 2021.

https://www.r-ccs.riken.jp/en/topics/naming.html