
RM-Replay: A High-Fidelity Tuning, Optimization and Exploration 
Tool for Resource Management
Maxime Martinasso
Swiss National Supercomputing Centre (CSCS)
ADAC 7 2019



Exploring resource manager parametrization of a production system
§ HPC center view

§ Goal is to improve the usage of the resource: higher utilization, higher throughput
§ What-if scenario: 

§ Changing RM parameters
§ Introducing new policies
§ Updating RM and using new features

§ User point of view
§ How long will my job wait in the queue?

§ If I improve my runtime estimate
§ If I use this specific queue
§ If I use a special constraint

§ Current approaches
§ Identify a better configuration? How do you test it?

§ Apply a change between two maintenances, monitor
§ Using a simulator?

§ Complexity of a production system: partitions, priorities, node states, reservation, …
§ Accuracy of the simulation
§ Translate simulation output into decision making
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New approach: RM-Replay

§ Use the exact same software stack for the RM
§ No modification of the code (or very minimal)

§ Use fewer resources than the production system
§ Less physical resources: nodes
§ Less time: faster-than-real-time clock

§ “Replay” the exact set of actions for a workload:
§ Job submissions
§ Node availability
§ Reservations

§ Allow historical studies, gather statistics on events (end of allocation period, GB)
§ Use a well-known interface (the RM itself) by the system engineers 
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How does RM-Replay work?

§ Use a container to recreate the entire resource manager software stack in an 
isolated environment

§ Inside the same container recreate the set of users (who submit jobs)
§ Create an adjustable clock which will replace the system clock and will be used 

by the software stack

§ Develop a set of programs to recreate the interaction originating from a workload
§ Provide configuration data outside the container to enable portability to other 

HPC systems
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Instance of RM-Replay: Slurm-Replay

§ Slurm is a resource manager used on many large HPC systems
§ 6 of top 10 in the top500 (November 2017)
§ Many features: High scalability and performance, fair-share, reservation, plugins, …

§ Slurm is a complex software:
§ Accurate simulation is very difficult
§ Integrated simulator modifies code base and the scheduling behavior

§ Event based simulation, capturing all events? Impact on the scheduling?
§ Lack of portability

§ Characteristics of Slurm-Replay:
§ Use the original and not modified Slurm software stack
§ Use configuration parameters from a large HPC production system (Piz Daint)
§ Replay production workloads
§ Evaluate scheduling metrics: throughput, utilization, waiting time, …
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How does Slurm-Replay work?
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Workload:
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Elements in a trace:
Job={id, submission time, start time, end time, number of nodes, time limit, 
partition, dependency, priority, qos, reservation name, user, account, state,
exit code, eligible time, list of nodes}
Reservation={id, name, account, start time, end time, list of nodes}
Node state={start time, end time, node name, state, reason}

• Jobs
• Job dependencies
• Node states
• Reservations

Multitenant:
• Extract users/groups



Workflow

submitter

•Start submitter
•Start node controller

•Reservations are submitted to Slurm
•Wait for Replay-clock to start 

ticker

•Make Replay-clock progress until all jobs
have terminated (Wend time)

collect output

•Create a replay trace from the database
•Derive workload metrics
•Display Slurm statistics

•Display Slurm and Slurm-Replay errors 

Docker container

Wstart time: Workload start time
Wend time: Workload end time 

Slurm-Replay processScriptsSlurm process

ticker
•Set Replay-clock to Wstart time

(no increment)

configure slurm

•Copy Slurm configuration
•Update configuration 

Slurm

•Start slurmdbd
•Start slurmd

•Start slurmctld
•Enable frontend and partitions 

create slurm database

•Start a SQL database
•Create a new Slurm database

•Update content from original database 
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(What-if)



Technical solutions and limitations

§ No root privileges inside the container (to use HPC container runtimes)

§ Wrap functions used to impersonate users to always return true:

§ setuid, setgid, chown
§ Wrap common C time functions to use a faster clock:

§ sleep, gettimeofday, …, clock counter is in /dev/shm

§ Create and bind mount /etc/passwd and /etc/group from users in the workload

§ Use Slurm Frontend feature to execute only one slurmd daemon for an arbitrary 
number of nodes

§ Missing data from the Slurm database taken from system logs

§ job dependency, topology, reservation submission time
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Accuracy: makespan
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§ Data distribution over 50 tests
§ 24 hours, 6025 jobs: 2664 jobs GPU constraint, 2409 jobs MC constraint, 169 jobs 

in other partitions
§ 10 reservations and 51 state changes of nodes
§ Peak utilization of 97% of GPU nodes and 54% of MC nodes
§ Schedule completed in 47.65 hours for GPU and 42.7 hours for MC
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Performance vs clock rate

6239
1 day

14454
2 days

20935
3 days

28046
4 days

35162
5 days

Number of jobs and days

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
ra

tio

Clock rate
0.05
0.1
0.15
0.2

RM-Replay, SC18 11

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9 0.1 0.1

5 0.2

Replay-clock rate

1

2

3

4

5

El
ap

se
d

tim
e

[h
ou

r]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
ra

tio
of

Sl
ur

m
-R

ep
la

y

Elapsed time [s]
Failure ratio [%]

§ Failure: Slurm-Replay takes too long to process backlog of jobs
§ Performance dependent on the underlying CPU frequency
§ A clock rate of 0.06 (16.7x faster) seems to be the best option on a 2.1 GHz CPU
§ Use only one slurmd daemon



Example of use case
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User: “Will my job be scheduled earlier if I provide a better runtime estimation?”

Slowdown means: how much a 
user is willing to wait:
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There are fewer jobs waiting but 
no improvement in the waiting 
time.



Conclusion and future work

§ RM-Replay: A High-Fidelity Tuning, Optimization and Exploration Tool for 
Resource Management

§ Useful for testing what-if scenario: parameter, version, feature, policy, …
§ Help to take better decision on a production system configuration

§ Slurm-Replay an instance of RM-Replay for Slurm

§ Use Slurm-Replay at CSCS
§ Investigate slurmd performance
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https://github.com/eth-cscs/slurm-replay

https://github.com/eth-cscs/slurm-replay


Thank you for your attention.


