
RM-Replay: A High-Fidelity Tuning, Optimization and Exploration 
Tool for Resource Management
Maxime Martinasso
Swiss National Supercomputing Centre (CSCS)
ADAC 7 2019



Exploring resource manager parametrization of a production system
§ HPC center view

§ Goal is to improve the usage of the resource: higher utilization, higher throughput
§ What-if scenario: 

§ Changing RM parameters
§ Introducing new policies
§ Updating RM and using new features

§ User point of view
§ How long will my job wait in the queue?

§ If I improve my runtime estimate
§ If I use this specific queue
§ If I use a special constraint

§ Current approaches
§ Identify a better configuration? How do you test it?

§ Apply a change between two maintenances, monitor
§ Using a simulator?

§ Complexity of a production system: partitions, priorities, node states, reservation, …
§ Accuracy of the simulation
§ Translate simulation output into decision making

RM-Replay, SC18 2



New approach: RM-Replay

§ Use the exact same software stack for the RM
§ No modification of the code (or very minimal)

§ Use fewer resources than the production system
§ Less physical resources: nodes
§ Less time: faster-than-real-time clock

§ “Replay” the exact set of actions for a workload:
§ Job submissions
§ Node availability
§ Reservations

§ Allow historical studies, gather statistics on events (end of allocation period, GB)
§ Use a well-known interface (the RM itself) by the system engineers 

RM-Replay, SC18 3



How does RM-Replay work?

§ Use a container to recreate the entire resource manager software stack in an 
isolated environment

§ Inside the same container recreate the set of users (who submit jobs)
§ Create an adjustable clock which will replace the system clock and will be used 

by the software stack

§ Develop a set of programs to recreate the interaction originating from a workload
§ Provide configuration data outside the container to enable portability to other 

HPC systems

RM-Replay, SC18 4



Instance of RM-Replay: Slurm-Replay

§ Slurm is a resource manager used on many large HPC systems
§ 6 of top 10 in the top500 (November 2017)
§ Many features: High scalability and performance, fair-share, reservation, plugins, …

§ Slurm is a complex software:
§ Accurate simulation is very difficult
§ Integrated simulator modifies code base and the scheduling behavior

§ Event based simulation, capturing all events? Impact on the scheduling?
§ Lack of portability

§ Characteristics of Slurm-Replay:
§ Use the original and not modified Slurm software stack
§ Use configuration parameters from a large HPC production system (Piz Daint)
§ Replay production workloads
§ Evaluate scheduling metrics: throughput, utilization, waiting time, …

RM-Replay, SC18 5



How does Slurm-Replay work?

Slurmd

Slurmctld

Clock

 counter

Job Runner
Stepd

Submitter

Node Controller

Ticker

Slurm 

processes

Slurm-Replay 

processes

1

2

3

4

5

6

Docker Container

Slurmdbd

7

SQL

database

Clock rate

Workload

trace

Slurm

configuration

files

Database dump:

users, accounts,...

RM-Replay, SC18 6



Workload:

RM-Replay, SC18 7

Time

Nodes

Workload
start time

Workload
stop time

Original
schedule

Selected
jobs in trace

Workload
end time

submission time

preset job

job in trace

job not in trace

Legend

Job
start time

Job end time

Elements in a trace:
Job={id, submission time, start time, end time, number of nodes, time limit, 
partition, dependency, priority, qos, reservation name, user, account, state,
exit code, eligible time, list of nodes}
Reservation={id, name, account, start time, end time, list of nodes}
Node state={start time, end time, node name, state, reason}

• Jobs
• Job dependencies
• Node states
• Reservations

Multitenant:
• Extract users/groups



Workflow

submitter

•Start submitter
•Start node controller

•Reservations are submitted to Slurm
•Wait for Replay-clock to start 

ticker

•Make Replay-clock progress until all jobs
have terminated (Wend time)

collect output

•Create a replay trace from the database
•Derive workload metrics
•Display Slurm statistics

•Display Slurm and Slurm-Replay errors 

Docker container

Wstart time: Workload start time
Wend time: Workload end time 

Slurm-Replay processScriptsSlurm process

ticker
•Set Replay-clock to Wstart time

(no increment)

configure slurm

•Copy Slurm configuration
•Update configuration 

Slurm

•Start slurmdbd
•Start slurmd

•Start slurmctld
•Enable frontend and partitions 

create slurm database

•Start a SQL database
•Create a new Slurm database

•Update content from original database 

RM-Replay, SC18 8

(What-if)



Technical solutions and limitations

§ No root privileges inside the container (to use HPC container runtimes)

§ Wrap functions used to impersonate users to always return true:

§ setuid, setgid, chown
§ Wrap common C time functions to use a faster clock:

§ sleep, gettimeofday, …, clock counter is in /dev/shm

§ Create and bind mount /etc/passwd and /etc/group from users in the workload

§ Use Slurm Frontend feature to execute only one slurmd daemon for an arbitrary 
number of nodes

§ Missing data from the Slurm database taken from system logs

§ job dependency, topology, reservation submission time

RM-Replay, SC18 9



Accuracy: makespan

0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2
Replay-clock rate

2860

2880

2900

M
ak

es
pa

n
[m

in
]

Accuracy of Slurm-Replay for the GPU constraint.

Reference
Median

RM-Replay, SC18 10

§ Data distribution over 50 tests
§ 24 hours, 6025 jobs: 2664 jobs GPU constraint, 2409 jobs MC constraint, 169 jobs 

in other partitions
§ 10 reservations and 51 state changes of nodes
§ Peak utilization of 97% of GPU nodes and 54% of MC nodes
§ Schedule completed in 47.65 hours for GPU and 42.7 hours for MC

0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2
Replay-clock rate

2550

2560

2570

2580

M
ak

es
pa

n
[m

in
]

Accuracy of Slurm-Replay for the MC constraint.

Reference
Median



Performance vs clock rate

6239
1 day

14454
2 days

20935
3 days

28046
4 days

35162
5 days

Number of jobs and days

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
ra

tio

Clock rate
0.05
0.1
0.15
0.2

RM-Replay, SC18 11

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9 0.1 0.1

5 0.2

Replay-clock rate

1

2

3

4

5

El
ap

se
d

tim
e

[h
ou

r]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
ra

tio
of

Sl
ur

m
-R

ep
la

y

Elapsed time [s]
Failure ratio [%]

§ Failure: Slurm-Replay takes too long to process backlog of jobs
§ Performance dependent on the underlying CPU frequency
§ A clock rate of 0.06 (16.7x faster) seems to be the best option on a 2.1 GHz CPU
§ Use only one slurmd daemon



Example of use case

within 10% of
actual runtime

within 50% of
actual runtime

unmodified
runtime estimation

101

102

103

Sl
ow

do
w

n
(lo

gs
ca

le
)

Runtime
estimation:

Mean
Median

500

750

1000

1250

N
um

be
ro

f
af

fe
ct

ed
jo

bs

RM-Replay, SC18 12

User: “Will my job be scheduled earlier if I provide a better runtime estimation?”

Slowdown means: how much a 
user is willing to wait:

!"#$% + !'(')
!'(')

There are fewer jobs waiting but 
no improvement in the waiting 
time.



Conclusion and future work

§ RM-Replay: A High-Fidelity Tuning, Optimization and Exploration Tool for 
Resource Management

§ Useful for testing what-if scenario: parameter, version, feature, policy, …
§ Help to take better decision on a production system configuration

§ Slurm-Replay an instance of RM-Replay for Slurm

§ Use Slurm-Replay at CSCS
§ Investigate slurmd performance

RM-Replay, SC18 13

https://github.com/eth-cscs/slurm-replay

https://github.com/eth-cscs/slurm-replay


Thank you for your attention.


