
Application Enhanced by AI and Transprecision Computing:
Finite Element Earthquake City Simulation

Kohei Fujita, Takuma Yamaguchi

The University of Tokyo

Accelerated Data Analytics and Computing Workshop 7 – ORNL, TN
Mar. 25, 2019

2

Smart cities

• Controlling cities based
on real-time data for
higher efficiency

• Computer modeling via
high-performance
computing is expected as
key enabling tool

• Disaster resiliency is
requirement; however,
not established yet

3

Example of highly dense city: Tokyo
Station district

4

Fully coupled aboveground/underground
earthquake simulation required for resilient
smart city

Earthquake modeling of smart cities
• Unstructured mesh with implicit solvers required for urban earthquake

modeling
• We have been developing high-performance implicit unstructured finite-element solvers

(SC14 & SC15 Gordon Bell Prize Finalist, SC16 best poster)
• However, simulation for smart cities requires full coupling in super-fine

resolution
• Traditional physics-based modeling too costly
• Can we combine use of data analytics to solve this problem?

5

SC14, SC15 & SC16 solvers:
ground simulation only Fully coupled ground-structure simulation with underground structures

Data analytics and equation based
modeling
• Equation based modeling

• Highly precise, but costly
• Data analytics

• Fast inferencing, but accuracy not as high
• Use both methods to complement each other

6

Phenomena

Data analytics Equation based modeling

Integration of data analytics and equation
based modeling
• First step: use data generated by equation based modeling for

data analytics training
• Use of high-performance computing in equation based modeling

enables generating very large amounts of high quality data
• We developed earthquake intensity prediction method using this

approach (SC17 Best Poster)

7

Phenomena

Data analytics
(with better
prediction)

Equation based
modeling

Simulated
data for
training

SC17 • SC14: equation based modeling
• SC15: equation based modeling
• SC16: equation based modeling
• SC17: equation based modeling for AI

Integration of data analytics and equation
based modeling
• We extend this concept in this paper: train AI to accelerate

equation based modeling

8

Phenomena

Data
analytics

Equation based
modeling
(25-fold speedup
from without AI)

AI for accelerating
equation based
solver

SC18

• SC14: equation based modeling
• SC15: equation based modeling
• SC16: equation based modeling
• SC17: equation based modeling for AI
• SC18: AI for equation based modeling

a) Overview of city
model c) Close up view of city model

b) Location of underground structure d) Displacement response of city
e) Displacement response
of underground structure

Earthquake modeling for smart cities
• By using AI-enhanced solver, we enabled fully coupled ground-

structure simulation on Summit

9

Algorithm design of AI-
enhanced solver

10

Difficulties of using data analytics to

accelerate equation based modeling

• Target: Solve A x = f
• Difficulty in using data analytics in solver

• Data analytics results are not always accurate

• We need to design solver algorithm that enables robust and cost
effective use of data analytics, together with uniformity for
scalability on large-scale systems

• Candidates: Guess A-1 for use in preconditioner

• For example, we can use data analytics to determine the fill-in of

matrix; however, challenging for unstructured mesh where sparseness

of matrix A is nonuniform (difficult for load balancing and robustness)

� Manipulation of A without additional information may be difficult…

11

Designing solver suitable for use with AI

• Use information of underlying governing equation
• Governing equation’s characteristics with discretization conditions

should include information about the difficulty of convergence in solver
• Extract parts with bad convergence using AI and extensively solve

extracted part

12

Phenomena

Data
analytics

Governing equation

A x = f

Equation based modeling

Discretization

Solver suitable for use with AI

• Transform solver such
that AI can be used
robustly

• Select part of domain to
be extensively solved in
adaptive conjugate
gradient solver

• Based on the governing
equation’s properties,
part of problem with bad
convergence is selected
using AI

13

Adaptive Conjugate Gradient iteration
(2nd order tetrahedral mesh)

PreCGc (1st order tetrahedral mesh)
Approximately solve Ac zc = rc

PreCGcpart (1st order tetrahedral mesh)
Approximately solve Acp zcp= rcp

PreCG (2nd order tetrahedral mesh)
Approximately solve A z = r

Lo
op

 u
nt

il
co

nv
er

ge
d Use zc as initial solution

Use zcp as initial solution

Use z for search direction

AI preconditioner – use to roughly solve A z = r

How to select part of problem using AI
• In discretized form, governing equation becomes function of

material property, element and node connectivity and
coordinates

• Train an Artificial Neural Network (ANN) to guess the degree of
difficulty of convergence from these data

1414Whole city model Extracted part by AI (about 1/10 of whole model)

Example of part selection using AI
• About 1/10 of domain is selected using generated ANN

• Cost per iteration of selective solving is 1/10 of standard solver

15

Hard ground layer

Soft ground layer

Underground
structure

x
y
z

Part selected
by AI

Error distribution

Performance of solver with AI
• FLOP count decreased by 5.56-times from PCGE (standard

solver; Conjugate Gradient solver with block Jacobi
preconditioning)

• Name developed solver MOTHRA (iMplicit sOlver wiTH artificial
intelligence and tRAnsprecision computing)

16

Without AI With AI
CG iterations 132,665 88
PreCGc iterations - 5,803
PreCGcpart iterations - 26,826
PreCG iterations - 3,103
FLOPS count 184.7 PFLOP 33.2 PFLOP

Performance of AI-enhanced solver of K computer

• Measure performance on CPU-based K computer
• Compare performance of solvers

• PCGE (standard solver)
• GAMERA (SC14 Gordon Bell Prize finalist solver, with multi-grid & mixed-

precision arithmetic)
• MOTHRA (developed solver)

17

K computer: 8 core CPU x 82944 node system
with peak performance of 10.6 PFLOPS

Performance of AI-enhanced solver on K computer
• Solver designed to have uniform load across large number of processors

• Excellent load-balancing and scalability

18

36,275.6

36,389.1

4,093.4

3,774.1

2,195.9

1,951.2

0 10000 20000 30000 40000

49152

24576

12288

9216

4608

2304

1152

576

Elapsed time (s)

of

 M
PI

 p
ro

ce
ss

es
 (#

 n
od

es
)

(17.2% of FP64 peak)

�MOTHRA (Developed) �GAMERA (SC14) �PCGE (Standard)

Weak scaling
36,389.1

18,908.7

9,508.8

4,773.3 3,774.1

1,867.7
1,065.7

531.4

1,951.2
1,025.6

521.9

271.7
256

512

1024

2048

4096

8192

16384

32768

65536

256 2048

El
ap

se
d

tim
e

(s
)

of MPI processes (# of nodes)

Strong scaling

GPU implementation of
AI-enhanced solver

19

Porting Strategy

• Our algorithm exhibits good performance/scalability on
CPU-based supercomputer

• Same algorithm can be effective on GPU-based systems…?
• Already designed for good scalability
• Arithmetic count is reduced by AI in the solver

Requirements for GPU-based system
• Inter-node throughput of the system is relatively lower than previous

supercomputer
• To attain higher performance, we have to reduce point-to-point

communication cost more carefully
• We have been using FP32-FP64 variables
• Transprecision computing is available due to adaptive preconditioning

K computer Piz Daint Summit
CPU/node 1�SPARC64 VIIIfx 1�Intel Xeon E5-2690

v3
2�IBM POWER 9

GPU/node - 1�NVIDIA P100 GPU 6�NVIDIA V100 GPU
Peak FP32
performance/node

0.128 TFLOPS 9.4 TFLOPS 93.6 TFLOPS

Memory bandwidth 512 GB/s 720 GB/s 5400 GB/s
Inter-node throughput 5 GB/s

in each direction
10.2 GB/s 25 GB/s

Introduction of FP16 variables
• Half precision can be used for reduction of data transfer size

(Later used again in computation part)

• Using FP16 for whole matrix or vector causes overflow/underflow
or fails to converge

• Smaller exponent bits → small dynamic range

• Smaller fraction bits → no more than 4-digit accuracy

S e x p o n e n t f r a c t i o nSingle precision
(FP32, 32 bits)

1bit sign + 8bits exponent + 23bits fraction

S e x p f r a c t i o nHalf precision
(FP16, 16 bits)

1bit sign + 5bits exponent + 10bits fraction

FP16 for point-to-point communication

• FP16 MPI buffer only for boundary part

• To avoid overflow or underflow, Original vector ! is divided into

one localized scaling factor "#$%& and FP16 vector '!()
• Data transfer size can be reduced

• "#$%&×'!() does not match ! exactly, but convergence

characteristic is not changed for most problems

!
PE#0

PE#1

"#$%&×'!()
… …×

boundary part

Overlap of computation and
communication
1 : ! = #$
2 : synchronize % by point-to-point comm.
3 : ! = & − !;) = *+,!
4 : -. = 1; 0 = 1; -1 =) 2 !; 3 =) 2 %
5 : synchronize -1, 3 by collective comm.
6 : while (|!6|/|&6| > 9:;<=>?@<) do
7 : A = −3-./0
8 : $ = $ + 0C; C =) + AC
9 : % = #C
10: synchronize % by point-to-point comm.
11: -. = C 2 %
12: synchronize -. by collective comm.
13: 0 = -1/-. ; -. = -1
14: ! = ! − 0%;) = *+,!; -1 =) 2 !; 3 =) 2 %
15: synchronize -1, 3 by collective comm.
16: enddo

i-th time step • We solve A x = f for each time step
using Conjugate Gradient method

• Point-to-point communication is
overlapped with matrix vector
multiplication

• However, this communication is still
bottleneck of the solver

1. boundary part computation
2. inner part computation &

boundary part communication

PE#0
boundary part:
send/receive between other MPI processes

inner part

Overlap of computation and
communication
• Introduction of time parallel algorithm

• Solve four time steps in the nonlinear analysis in parallel
• Compute 1 current time step and 3 future time steps used for initial guesses
• Leads to improved peak performance and short time-to-solution

• Arithmetic count for one iteration increases
• Highly accurate initial solutions can be used

25Current time step

xi

Timestep i i+1 i+2 i+3 i+4 i+5

xi+1 xi+2 xi+3

xi+1 xi+2 xi+3 xi+4

xi+2 xi+3 xi+4 xi+5

Future time steps

use as initial solution

Overlap of computation and
communication
1 : ! = #$
2 : synchronize % by point-to-point comm.
3 : ! = & − !;) = *+,!
4 : -. = 1; 0 = 1; -1 =) 2 !; 3 =) 2 %
5 : synchronize -1, 3 by collective comm.
6 : while (|!6|/|&6| > 9:;<=>?@<) do
7 : A = −3-./0
8 : $ = $ + 0C; C =) + AC
9 : % = #C
10: synchronize % by point-to-point comm.
11: -. = C 2 %
12: synchronize -. by collective comm.
13: 0 = -1/-. ; -. = -1
14: ! = ! − 0%;) = *+,!; -1 =) 2 !; 3 =) 2 %
15: synchronize -1, 3 by collective comm.
16: enddo

i, i+1, i+2, i+3-th time step • Conjugate Gradient method with
time-parallel algorithm

• Compute four vectors at each line
• Looks complicated, but consists of

simple operations

Overlap of computation and
communication
1’: while (e""#"$ > &#'(")*+() do
2’: Vector operation 1
3’: Matrix vector multiplication
4’: Point-to-point comm.
5’: Vector operation 2
6’: Collective comm.
7’: Vector operation 3
8’: Collective comm.
9’: enddo

i, i+1, i+2, i+3-th time step • Simplified loop
• Computation part

• 3 groups of vector operations
• 1 sparse matrix vector multiplication

• Communication part
• 1 point-to-point communication
• 2 collective communication

• We modify algorithm to reduce communication
cost by utilizing multiple time steps and vectors

Overlap of computation and
communication

1’ : while (e""#"$ > &#'(")*+() do
2’ :
3’ : Collective comm.
4’ : Vector operation 1
5’ : Matrix vector multiplication
6’ : Point-to-point comm.
7’ : Vector operation 2
8’ : Collective comm.
9’ :
10’:
11’: Vector operation 3
12’: enddo

i, i+1-th time step
1’ : while (e""#"$ > &#'(")*+() do
2’ : Vector operation 2
3’ : Collective comm.
4’ :
5’ :
6’ : Vector operation 3
7’ :
8’ : Collective comm.
9’ : Vector operation 1
10’: Matrix vector multiplication
11’: Point-to-point comm.
12’: enddo

i+2, i+3-th time step

• 4 vectors are divided into 2 vectors � 2 sets
• Point-to-point communication is overlapped with other vector operations
• The number of collective communication is unchanged

Low precision variables
for computation part in the solver
• Manage to reduce communication cost in the solver
• Now, it’s worth reducing computation cost to improve

time-to-solution by using transprecision computing
• FP21 for memory bound vector operations
• FP16 for Element-by-Element kernel

• Process 2�FP16 variables on 2-element vector simultaneously and
expect double performance

FP32 FP16 FP16

FP16 computation in

Element-by-Element method

• Matrix-free matrix-vector multiplication

• Compute element-wise multiplication

• Add into the global vector

• Normalization of variables per element can be performed

• To avoid underflow/overflow, we use values close to 1 in multiplication

f = Σe Pe Ae Pe
T u

[Ae is generated on-the-fly]

Element-by-Element

(EBE) method

+

=

…
+

=

Element #0

Element #1

Ae

uf
Element #N-1

…

Implementation of FP16 computation

+=

+=

Atomic
addElement #0

Element #1

fSP

=

� �

��

�

=

� �

��

�

scaling rescaling

scaling rescaling

ue
SP Ae

SP

α β

ue
HP Ae

HP feHP feSP

• Vectors ue are scaled to avoid overflow/underflow in using half precision

• Element matrix Ae is generated on-the-fly and also scaled
• reorder computation ordering so that values close to 1 are used

• Most costly multiplication can be computed in FP16

• Achieved 71.9% peak FP64 performance on V100 GPU

Introduction of custom data type: FP21
• Most computation in CG loop is memory bound computation

• However, it’s impossible to use FP16 for whole vector
• Trying to use FP21 variables for other memory bound

computation

S e x p o n e n t f r a c t i o n

S e x p o n e n t f r a c t i o n

Single precision
(FP32, 32 bits)

(FP21, 21 bits)

1bit sign + 8bits exponent + 23bits fraction

1bit sign + 8bits exponent + 12bits fraction

S e x p f r a c t i o nHalf precision
(FP16, 16 bits)

1bit sign + 5bits exponent + 10bits fraction

Implementation of FP21 computation
• Not supported in hardware, used only for storing

• FP21(stored)⇐bit operation⇒FP32(computed)
• FP21�3 are stored into 64bit array

• We are solving 3D finite element solver, so x, y, and z components can
be stored as one components of 64 bits array

• 1/3 of memory consumption compared to FP64 variables

64bit

FP21, 21bit FP21, 21bit FP21, 21bit

Performance measurement
On GPU-based supercomputer, Piz Daint and Summit

Performance comparison
• We solve the same problem as K-computer using 288 GPUs on Piz Daint & Summit

• PCGE (conventional solver)
• GAMERA (SC14 Gordon Bell Finalist solver)
• MOTHRA (our proposed solver)

• MOTHRA is sufficiently faster than other solvers on Summit
• 25.3-fold speedup from PCGE
• 3.99-fold speedup from GAMERA

• Convergence characteristic is not largely changed even when we use FP16 & FP21

110.7
75.8

373.2 302.5

2759.3
1923.7

32

128

512

2048

Piz Daint Summit

El
ap

se
d

Ti
m

e(
s)

MOTHRA
GAMERA
PCGE

Weak scaling on Piz Daint

110.7 117.8 121.1 120.8 123.7

373.2 378.5 399.5 401 393.3

0
50

100
150
200
250
300
350
400
450

El
ap

se
d

Ti
m

e
(s

)

MOTHRA
GAMERA

of GPUs 288 576 1152 2304 4608
of node 288 576 1152 2304 4608

DOF 3.5�109 7�109 14�109 28�109 56�109

MOTHRA’s efficiency to
FP64 peak

22.1% 19.8%

• MOTHRA demonstrates high scalability (89.5% to the smallest case)
• Leading to 19.8% peak FP64 performance on nearly full system

Weak scaling on Summit

75.8 77.6 80.4 82.9 84.3 83.7 90 100.4

302.5 311.7 327.3 349.8 374.6 380.2
415.1

454.2

0
50

100
150
200
250
300
350
400
450
500

288 576 1152 2304 4608 6144 12288 24576

E
la

ps
ed

 ti
m

e
(s

)

MOTHRA
GAMERA

of GPUs 288 576 1152 2304 4608 6144 12288 24576

of node 48 96 192 384 768 1024 2048 4196

DOF 3.5�109 7�109 14�109 28�109 56�109 75�109 151�109 302�109

MOTHRA’s efficiency to
FP64 peak

19.5% 14.7%

• Scalability greatly improves compared to previous solver GAMERA
• MOTHRA demonstrates high scalability

• Leading to 14.7% peak FP64 performance on nearly full system

Summary and future implications

• Combination with FP16-FP21-FP32-FP64 transprecision
computation/communication techniques enabled high
performance of

• 25.3-fold speedup from standard solver
• 3.99-fold speedup from state-of-the-art SC14 Gordon Bell Finalist

solver
• 14.7% peak FP64 performance on near full system of Summit (4096

nodes)

38

Summary and future implications

• Integration of data analytics and equation based modeling is
one of the key questions in high performance computing

• New class of algorithms is required for accelerating equation based
simulation by data analytics

• We accelerated earthquake simulation by designing a scalable solver
algorithm that can robustly incorporate data analytics

• Idea of accelerating simulations with data analytics can be
generalized for other types of equation based modeling

• Future development of high-performance computer systems supporting
both data analytics and equation based simulations is key tool for
advance of science and engineering

39

Acknowledgments
Our results were obtained using the Summit at Oak Ridge Leadership Computing
Facility, Oak Ridge National Laboratory (ORNL), Piz Daint at Swiss National
Supercomputing Centre (CSCS), and K computer at RIKEN Center for
Computational Science (R-CCS, proposal numbers: hp170249, hp180217).
We thank Yukihiko Hirano (NVIDIA) for coordination of the collaborative research
project. We thank Christopher B. Fuson, Don E. Maxwell, Oscar Hernandez, Scott
Atchley, Ver�onica Melesse-Vergara (ORNL), Jeff Larkin, Stephen Abbott (NVIDIA),
Lixiang Luo (IBM), Richard Graham (Mellanox Technologies) for generous support
concerning use of Summit.
We thank Andreas Jocksch, Luca Marsella, Victor Holanda, Maria Grazia Giuffreda
(CSCS) for generous support concerning use of Piz Daint. We thank the
Operations and Computer Technologies Division of RCCS and the High
Performance Computing Infrastructure helpdesk for generous support concerning
use of K computer. We thank Sachiko Hayashi of Cybernet Systems Co., Ltd. for
support in visualizing the application example.
We acknowledge support from Post K computer project (Priority Issue 3 -
Development of integrated simulation systems for hazards and disasters induced
by earthquakes and tsunamis) and Japan Society for the Promotion of Science
(18H05239, 26249066, 25220908, and 17K14719).

40

