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Smart cities

• Controlling cities based 
on real-time data for 
higher efficiency

• Computer modeling via 
high-performance 
computing is expected as 
key enabling tool

• Disaster resiliency is 
requirement; however, 
not established yet
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Example of highly dense city: Tokyo 
Station district
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Fully coupled aboveground/underground 
earthquake simulation required for resilient 
smart city



Earthquake modeling of smart cities
• Unstructured mesh with implicit solvers required for urban earthquake 

modeling
• We have been developing high-performance implicit unstructured finite-element solvers 

(SC14 & SC15 Gordon Bell Prize Finalist, SC16 best poster)
• However, simulation for smart cities requires full coupling in super-fine 

resolution
• Traditional physics-based modeling too costly
• Can we combine use of data analytics to solve this problem?
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SC14, SC15 & SC16 solvers: 
ground simulation only Fully coupled ground-structure simulation with underground structures



Data analytics and equation based 
modeling
• Equation based modeling

• Highly precise, but costly
• Data analytics

• Fast inferencing, but accuracy not as high
• Use both methods to complement each other

6

Phenomena

Data analytics Equation based modeling



Integration of data analytics and equation 
based modeling
• First step: use data generated by equation based modeling for 

data analytics training
• Use of high-performance computing in equation based modeling 

enables generating very large amounts of high quality data
• We developed earthquake intensity prediction method using this 

approach (SC17 Best Poster)
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Phenomena

Data analytics 
(with better 
prediction)

Equation based 
modeling

Simulated 
data for 
training

SC17 • SC14: equation based modeling
• SC15: equation based modeling
• SC16: equation based modeling
• SC17: equation based modeling for AI



Integration of data analytics and equation 
based modeling
• We extend this concept in this paper: train AI to accelerate 

equation based modeling
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Phenomena

Data 
analytics

Equation based 
modeling
(25-fold speedup 
from without AI)

AI for accelerating 
equation based 
solver

SC18

• SC14: equation based modeling
• SC15: equation based modeling
• SC16: equation based modeling
• SC17: equation based modeling for AI
• SC18: AI for equation based modeling



a) Overview of city 
model c) Close up view of city model

b) Location of underground structure d) Displacement response of city
e) Displacement response 
of underground structure

Earthquake modeling for smart cities
• By using AI-enhanced solver, we enabled fully coupled ground-

structure simulation on Summit
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Algorithm design of AI-
enhanced solver
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Difficulties of using data analytics to 

accelerate equation based modeling

• Target: Solve A x = f
• Difficulty in using data analytics in solver

• Data analytics results are not always accurate

• We need to design solver algorithm that enables robust and cost 
effective use of data analytics, together with uniformity for 
scalability on large-scale systems

• Candidates: Guess A-1 for use in preconditioner

• For example, we can use data analytics to determine the fill-in of 

matrix; however, challenging for unstructured mesh where sparseness 

of matrix A is nonuniform (difficult for load balancing and robustness)

� Manipulation of A without additional information may be difficult…
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Designing solver suitable for use with AI

• Use information of underlying governing equation
• Governing equation’s characteristics with discretization conditions 

should include information about the difficulty of convergence in solver
• Extract parts with bad convergence using AI and extensively solve 

extracted part
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Phenomena

Data 
analytics

Governing equation

A x = f

Equation based modeling

Discretization



Solver suitable for use with AI

• Transform solver such 
that AI can be used 
robustly

• Select part of domain to 
be extensively solved in 
adaptive conjugate 
gradient solver

• Based on the governing 
equation’s properties, 
part of problem with bad 
convergence is selected 
using AI
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Adaptive Conjugate Gradient iteration
(2nd order tetrahedral mesh)

PreCGc (1st order tetrahedral mesh)
Approximately solve Ac zc = rc

PreCGcpart (1st order tetrahedral mesh)
Approximately solve Acp zcp= rcp

PreCG (2nd order tetrahedral mesh)
Approximately solve A z = r

Lo
op

 u
nt

il 
co

nv
er

ge
d Use zc as initial solution

Use zcp as initial solution

Use z for search direction

AI preconditioner – use to roughly solve A z = r



How to select part of problem using AI
• In discretized form, governing equation becomes function of 

material property, element and node connectivity and 
coordinates

• Train an Artificial Neural Network (ANN) to guess the degree of 
difficulty of convergence from these data

1414Whole city model Extracted part by AI (about 1/10 of whole model)



Example of part selection using AI
• About 1/10 of domain is selected using generated ANN

• Cost per iteration of selective solving is 1/10 of standard solver
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Hard ground layer

Soft ground layer

Underground 
structure

x
y
z

Part selected 
by AI

Error distribution



Performance of solver with AI
• FLOP count decreased by 5.56-times from PCGE (standard 

solver; Conjugate Gradient solver with block Jacobi 
preconditioning)

• Name developed solver MOTHRA (iMplicit sOlver wiTH artificial 
intelligence and tRAnsprecision computing)
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Without AI With AI
CG iterations 132,665 88
PreCGc iterations - 5,803
PreCGcpart iterations - 26,826
PreCG iterations - 3,103
FLOPS count 184.7 PFLOP 33.2 PFLOP



Performance of AI-enhanced solver of K computer

• Measure performance on CPU-based K computer
• Compare performance of solvers

• PCGE (standard solver)
• GAMERA (SC14 Gordon Bell Prize finalist solver, with multi-grid & mixed-

precision arithmetic) 
• MOTHRA (developed solver)
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K computer: 8 core CPU x 82944 node system 
with peak performance of 10.6 PFLOPS 



Performance of AI-enhanced solver on K computer
• Solver designed to have uniform load across large number of processors

• Excellent load-balancing and scalability
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GPU implementation of 
AI-enhanced solver
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Porting Strategy

• Our algorithm exhibits good performance/scalability on 
CPU-based supercomputer 

• Same algorithm can be effective on GPU-based systems…?
• Already designed for good scalability 
• Arithmetic count is reduced by AI in the solver



Requirements for GPU-based system
• Inter-node throughput of the system is relatively lower than previous 

supercomputer
• To attain higher performance, we have to reduce point-to-point 

communication cost more carefully
• We have been using FP32-FP64 variables
• Transprecision computing is available due to adaptive preconditioning 

K computer Piz Daint Summit
CPU/node 1�SPARC64 VIIIfx 1�Intel Xeon E5-2690 

v3
2�IBM POWER 9 

GPU/node - 1�NVIDIA P100 GPU 6�NVIDIA V100 GPU
Peak FP32 
performance/node

0.128 TFLOPS 9.4 TFLOPS 93.6 TFLOPS

Memory bandwidth 512 GB/s 720 GB/s 5400 GB/s
Inter-node throughput 5 GB/s 

in each direction
10.2 GB/s 25 GB/s



Introduction of FP16 variables
• Half precision can be used for reduction of data transfer size

(Later used again in computation part)

• Using FP16 for whole matrix or vector causes overflow/underflow 
or fails to converge

• Smaller exponent bits → small dynamic range

• Smaller fraction bits → no more than 4-digit accuracy

S e x p o n e n t f r a c t i o nSingle precision
(FP32, 32 bits)

1bit sign + 8bits exponent + 23bits fraction

S e x p f r a c t i o nHalf precision
(FP16, 16 bits)

1bit sign + 5bits exponent + 10bits fraction



FP16 for point-to-point communication

• FP16 MPI buffer only for boundary part

• To avoid overflow or underflow, Original vector ! is divided into 

one localized scaling factor "#$%& and FP16 vector '!()
• Data transfer size can be reduced

• "#$%&×'!() does not match ! exactly, but convergence 

characteristic is not changed for most problems

!
PE#0

PE#1

"#$%&×'!()
… …×

boundary part



Overlap of computation and 
communication
1 : ! = #$
2 : synchronize % by point-to-point comm.
3 : ! = & − !; ) = *+,!
4 : -. = 1; 0 = 1; -1 = ) 2 !; 3 = ) 2 %
5 : synchronize -1, 3 by collective comm.
6 : while (|!6|/|&6| > 9:;<=>?@< ) do
7 :    A = −3-./0
8 :    $ = $ + 0C; C = ) + AC
9 :    % = #C
10:    synchronize % by point-to-point comm.
11:    -. = C 2 %
12:    synchronize -. by collective comm.
13:    0 = -1/-. ; -. = -1
14:    ! = ! − 0%; ) = *+,!; -1 = ) 2 !; 3 = ) 2 %
15:    synchronize -1, 3 by collective comm.
16: enddo

i-th time step • We solve A x = f for each time step 
using Conjugate Gradient method

• Point-to-point communication is 
overlapped with matrix vector 
multiplication

• However, this communication is still 
bottleneck of the solver

1. boundary part computation
2. inner part computation &

boundary part communication

PE#0
boundary part:
send/receive between other MPI processes

inner part



Overlap of computation and 
communication
• Introduction of time parallel algorithm

• Solve four time steps in the nonlinear analysis in parallel 
• Compute 1 current time step and 3 future time steps used for initial guesses 
• Leads to improved peak performance and short time-to-solution

• Arithmetic count for one iteration increases
• Highly accurate initial solutions can be used

25Current time step

xi

Timestep i i+1 i+2 i+3 i+4 i+5

xi+1 xi+2 xi+3

xi+1 xi+2 xi+3 xi+4

xi+2 xi+3 xi+4 xi+5

Future time steps

use as initial solution



Overlap of computation and 
communication
1 : ! = #$
2 : synchronize % by point-to-point comm.
3 : ! = & − !; ) = *+,!
4 : -. = 1; 0 = 1; -1 = ) 2 !; 3 = ) 2 %
5 : synchronize -1, 3 by collective comm.
6 : while (|!6|/|&6| > 9:;<=>?@< ) do
7 :    A = −3-./0
8 :    $ = $ + 0C; C = ) + AC
9 :    % = #C
10:    synchronize % by point-to-point comm.
11:    -. = C 2 %
12:    synchronize -. by collective comm.
13:    0 = -1/-. ; -. = -1
14:    ! = ! − 0%; ) = *+,!; -1 = ) 2 !; 3 = ) 2 %
15:    synchronize -1, 3 by collective comm.
16: enddo

i, i+1, i+2, i+3-th time step • Conjugate Gradient method with
time-parallel algorithm

• Compute four vectors at each line
• Looks complicated, but consists of 

simple operations



Overlap of computation and 
communication
1’: while (e""#"$ > &#'(")*+( ) do
2’:    Vector operation 1
3’:    Matrix vector multiplication
4’:    Point-to-point comm.
5’:    Vector operation 2
6’:    Collective comm.
7’:    Vector operation 3
8’:    Collective comm.
9’: enddo

i, i+1, i+2, i+3-th time step • Simplified loop
• Computation part

• 3 groups of vector operations 
• 1 sparse matrix vector multiplication

• Communication part
• 1 point-to-point communication 
• 2 collective communication 

• We modify algorithm to reduce communication 
cost by utilizing multiple time steps and vectors 



Overlap of computation and 
communication

1’ : while (e""#"$ > &#'(")*+( ) do
2’ :
3’ :    Collective comm.
4’ :    Vector operation 1
5’ :    Matrix vector multiplication
6’ :    Point-to-point comm.
7’ :    Vector operation 2
8’ :    Collective comm.
9’ :
10’:
11’:    Vector operation 3
12’: enddo

i, i+1-th time step 
1’ : while (e""#"$ > &#'(")*+( ) do
2’ :    Vector operation 2
3’ :    Collective comm.
4’ : 
5’ :
6’ :    Vector operation 3
7’ :    
8’ :    Collective comm.
9’ :    Vector operation 1
10’:    Matrix vector multiplication
11’:    Point-to-point comm.
12’: enddo

i+2, i+3-th time step 

• 4 vectors are divided into 2 vectors � 2 sets
• Point-to-point communication is overlapped with other vector operations
• The number of collective communication is unchanged 



Low precision variables 
for computation part in the solver
• Manage to reduce communication cost in the solver
• Now, it’s worth reducing computation cost to improve 

time-to-solution by using transprecision computing
• FP21 for memory bound vector operations 
• FP16 for Element-by-Element kernel

• Process 2�FP16 variables on 2-element vector simultaneously and
expect double performance

FP32 FP16 FP16



FP16 computation in 

Element-by-Element method

• Matrix-free matrix-vector multiplication 

• Compute element-wise multiplication

• Add into the global vector

• Normalization of variables per element can be performed

• To avoid underflow/overflow, we use values close to 1 in multiplication

f = Σe Pe Ae Pe
T u

[Ae is generated on-the-fly]

Element-by-Element

(EBE) method

+

=

…
+

=

Element #0

Element #1

Ae

uf
Element #N-1

…



Implementation of FP16 computation
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scaling rescaling

scaling rescaling
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α β

ue
HP Ae

HP feHP feSP

• Vectors ue are scaled to avoid overflow/underflow in using half precision

• Element matrix Ae is generated on-the-fly and also scaled
• reorder computation ordering so that values close to 1 are used

• Most costly multiplication can be computed in FP16

• Achieved 71.9% peak FP64 performance on V100 GPU



Introduction of custom data type: FP21
• Most computation in CG loop is memory bound computation

• However, it’s impossible to use FP16 for whole vector
• Trying to use FP21 variables for other memory bound 

computation

S e x p o n e n t f r a c t i o n

S e x p o n e n t f r a c t i o n

Single precision
(FP32, 32 bits)

(FP21, 21 bits)

1bit sign + 8bits exponent + 23bits fraction

1bit sign + 8bits exponent + 12bits fraction

S e x p f r a c t i o nHalf precision
(FP16, 16 bits)

1bit sign + 5bits exponent + 10bits fraction



Implementation of FP21 computation
• Not supported in hardware, used only for storing

• FP21(stored)⇐bit operation⇒FP32(computed)
• FP21�3 are stored into 64bit array

• We are solving 3D finite element solver, so x, y, and z components can 
be stored as one components of 64 bits array

• 1/3 of memory consumption compared to FP64 variables

64bit

FP21, 21bit FP21, 21bit FP21, 21bit



Performance measurement
On GPU-based supercomputer, Piz Daint and Summit



Performance comparison
• We solve the same problem as K-computer using 288 GPUs on Piz Daint & Summit

• PCGE (conventional solver)
• GAMERA (SC14 Gordon Bell Finalist solver)
• MOTHRA (our proposed solver)

• MOTHRA is sufficiently faster than other solvers on Summit
• 25.3-fold speedup from PCGE
• 3.99-fold speedup from GAMERA

• Convergence characteristic is not largely changed even when we use FP16 & FP21
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Weak scaling on Piz Daint
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MOTHRA’s efficiency to 
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22.1% 19.8%

• MOTHRA demonstrates high scalability (89.5% to the smallest case)
• Leading to 19.8% peak FP64 performance on nearly full system



Weak scaling on Summit
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DOF 3.5�109 7�109 14�109 28�109 56�109 75�109 151�109 302�109

MOTHRA’s efficiency to 
FP64 peak

19.5% 14.7%

• Scalability greatly improves compared to previous solver GAMERA 
• MOTHRA demonstrates high scalability

• Leading to 14.7% peak FP64 performance on nearly full system



Summary and future implications

• Combination with FP16-FP21-FP32-FP64 transprecision
computation/communication techniques enabled high 
performance of

• 25.3-fold speedup from standard solver
• 3.99-fold speedup from state-of-the-art SC14 Gordon Bell Finalist 

solver
• 14.7% peak FP64 performance on near full system of Summit (4096 

nodes)
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Summary and future implications

• Integration of data analytics and equation based modeling is 
one of the key questions in high performance computing

• New class of algorithms is required for accelerating equation based 
simulation by data analytics

• We accelerated earthquake simulation by designing a scalable solver 
algorithm that can robustly incorporate data analytics

• Idea of accelerating simulations with data analytics can be 
generalized for other types of equation based modeling

• Future development of high-performance computer systems supporting 
both data analytics and equation based simulations is key tool for 
advance of science and engineering
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