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Workflows on high-end HPC systems are undergoing 
significant changes.

• Cancer Moonshot Pilot2 – co-schedule many 
elements and ML continuously schedules, de-
schedules and executes MD jobs.

• In-situ analytics modules 

• ~7,500 jobs simultaneously running

Traditional pillar 
high-performance computing

New pillar
Machine learning to compare

simulation and experiment

HYDRA simulation NIF X-ray image

Complete simulation 
and experiment data

Improved prediction

Deep neural 
network

• Machine Learning Strategic Initiative (MLSI) – 1 billion short-
running jobs!

• Similar needs for co-scheduling heterogenous components
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Key challenges in emerging workflow scheduling include…

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

New pillar
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Flux provides a new scheduling model to meet these 
challenges.

Our “Fully Hierarchical Scheduling” is designed to cope with many
emerging workload challenges.
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Flux is specifically designed to embody our fully hierarchical 
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

Scheduler Parallelism

Scheduler Specialization

Rich API set

Consistent API set

Flux framework

Global Sched 

A

Sched 1

B

Sched 1.1 Sched 1.2

Remote Execution

Sched Framework 
Scheduling

Policy Plugin B

Msg Idioms (RPC/Pub-Sub)

Overlay Networks
& Routing

Comms Message Broker

Service Module Plug-ins Protocol

Key-Value Store

Service Modules

Sched Framework 

Remote Execution

Key-Value Store

Scheduling 
Policy Plugin A

Service Modules

Pa
re

nt
 F

lu
x 

In
st

an
ce

C
hi

ld
 F

lu
x 

In
st

an
ce

Resource

Techniques Challenges

Job Queue
A B C D E F…



6
LLNL-PRES- 765450

Scheduler specialization solves the co-scheduling challenge.

§ Traditional approach
— A single site-wide policy being enforced for all jobs
— No support for user-level scheduling with distinct policies

§ Flux enables both system- and user-level scheduling under the same 
common infrastructure.

§ Give users the freedom to adapt their scheduler instance to their needs.
— Instance owners can choose predefined policies different from system-level policies.
• FCFS/backfilling
• Scheduling parameters (queue depth, reservation depth etc)

— Create their own policy plug-in
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Scheduler parallelism solves the throughput challenge.

§ The centralized model is fundamentally limited.

§ Hierarchical design facilitates scheduler 
parallelism.

§ Deepening the scheduler hierarchy allows for 
higher levels of scheduler parallelism 

§ Implementation used in our scalability evaluation:
— Submit each job in the ensemble individually to the root
— The jobs are distributed automatically across the 

hierarchy. 

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux 
Instance

Flux 
Instance

Flux 
Instance

Flux 
Instance

Depth-
1

Depth-
2

Depth-
3



8
LLNL-PRES- 765450

A rich API set enables easy job coordination and 
communication.

§ Jobs in ensemble-based simulations often require close coordination and 
communication with the scheduler as well as among them.
— Traditional CLI-based approach is too slow and cumbersome.
— Ad hoc approaches (e.g., many empty files) can lead to many side-effects.

§ Flux provides well-known communication primitives.
— Pub/sub, request-reply, and send-recv patterns

§ High-level services
— Key-value store (KVS) API
— Job status/control (JSC) API
— KZ stdout/stderr stream API
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A consistent API set facilitates high portability.

§ Flux’s APIs are consistent across different platforms 

§ Effort for porting and optimizing Flux itself for a new environment is small
— Linux
— Require the lower-level system to provide the Process Management Interface (PMI)
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Scheduler specialization addresses co-scheduling 
challenges in Cancer Moonshot Pilot2 on Sierra

§ The machine-learning module evaluates the 
top n candidate patches for MD simulations.

§ Integrate Flux into Maestro workflow 
manager to start and stop jobs accordingly

§ Maestro adapter to Flux 
— Specialize the policy to be non-node-exclusive 

scheduling for complex co-scheduling
— At least 5 different logically separate jobs, each 

with CPU and/or GPU requirements on every node
— Handle the volume of jobs using simple hierarchical 

scheduling

Pilot2 workflow architecture 
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Scheduler specialization 
solves the co-scheduling 
challenge
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Deepening scheduler hierarchy can significantly improve 
job throughput.

UQ workflowStress test
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The changes in resource types are equally challenging.

§ Problems are not just confined to the 
workload/workflow challenge.

§ Resource types and their relationships are 
also becoming increasingly complex.

§ Much beyond compute nodes and cores...
— GPGPUs
— Burst buffers
— I/O and network bandwidth
— Network locality
— Power

PFS BW Capacity
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The traditional resource data models are largely 
ineffective to cope with the resource challenge.
§ Designed when the systems are much simpler

— Node-centric models
— SLURM: bitmaps to represent a set of compute nodes
— PBSPro: a linked-list of nodes

§ HPC has become far more complex 
— Evolutionary approach to cope with the increased complexity
— E.g., add auxiliary data structures on top of the node-centric data model

§ Can be quickly unwieldy
— Every new resource type requires new a user-defined type
— A new relationship requires a complex set of pointers cross-referencing different types.
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Flux uses a graph-based resource data model to 
represent schedulable resources and their relationships.
§ A graph consists of a set of vertices 

and edges
— Vertex: a resource
— Edge: a relationship between two resources

§ Highly composable to support a graph 
with arbitrary complexity

§ The scheduler remains to be a highly 
generic graph code. Containment subsystem

Network connectivity subsystem
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Flux’s graph-oriented canonical job-spec allows for a 
highly expressive resource requests specification.
§ Graph-oriented resource requirements

— Express the resource requirements of a program to the scheduler
— Express program attributes such as arguments, run time, and task 

layout, to be considered by the execution service

§ cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[18]

§ slot is the only non-physical resource type
— Represent a schedulable place where program process or 

processes will be spawned and contained 

§ Referenced from the tasks section
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Flux maps our complex scheduling problems into graph 
matching problems.

Traverse, match and score
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Flux significantly addresses emerging workflow and 
resource challenges on high-end HPC systems.
§ Scheduling today’s HPC centers are hampered by two broad categories of 

technical challenges: the workflow and resource challenges

§ Flux’s fully hierarchical scheduling comprehensively addresses workflow 
challenges.

§ Flux is powering up the production runs of the major science runs on 
LLNL’s Sierra, pre-exascale system.

§ Flux’s graph-based resource model and jobspec lays the foundation for 
addressing the resource challenge.
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Resources

§ flux-core:https://github.com/flux-framework/flux-core

§ flux-sched: https://github.com/flux-framework/flux-sched

§ Fully hierarchical scheduler: https://github.com/flux-framework/flux-hierarchy

§ Workflow examples: https://github.com/flux-framework/flux-workflow-examples

§ Quick guide: https://github.com/flux-framework/flux-framework.github.io

https://github.com/flux-framework/flux-core
https://github.com/flux-framework/flux-sched
https://github.com/flux-framework/flux-hierarchy
https://github.com/flux-framework/flux-workflow-examples
https://github.com/flux-framework/flux-framework.github.io
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We use graph filtering and pruned searching to manage 
the graph complexity and optimize our graph search.
§ The total graph can be quite complex

— Two techniques to manage the graph complexity 
and scalability

§ Filtering reduces graph complexity
— The graph model needs to support schedulers 

with different complexity
— Provide a mechanism by which to filter the graph 

based on what subsystems to use

§ Pruned search increases scalability
— Fast RB tree-based planner is used to implement 

a pruning filter per each vertex.
— Pruning filter keeps track of summary information 

(e.g., aggregates) about subtree resources.
— Scheduler-driven pruning filter update

Filtering

Containment+Network Containment

Pruning

Prune filter 
tracks  available 
node count in 
aggregate at the 
subtree
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