
LLNL-PRES- 765450
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Flux: Next-Generation Resource Management and Scheduling
Infrastructure for Exascale Workflow and Resource Challenges
ADAC, March 25, 2019

Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Herbein, Joseph
Koning, Tapasya Patki, Thomas R. W. Scogland, Becky Springmeyer, and Michela Taufer

2
LLNL-PRES- 765450

Workflows on high-end HPC systems are undergoing
significant changes.

• Cancer Moonshot Pilot2 – co-schedule many
elements and ML continuously schedules, de-
schedules and executes MD jobs.

• In-situ analytics modules

• ~7,500 jobs simultaneously running

Traditional pillar
high-performance computing

New pillar
Machine learning to compare

simulation and experiment

HYDRA simulation NIF X-ray image

Complete simulation
and experiment data

Improved prediction

Deep neural
network

• Machine Learning Strategic Initiative (MLSI) – 1 billion short-
running jobs!

• Similar needs for co-scheduling heterogenous components

3
LLNL-PRES- 765450

Key challenges in emerging workflow scheduling include…

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

New pillar

4
LLNL-PRES- 765450

Flux provides a new scheduling model to meet these
challenges.

Our “Fully Hierarchical Scheduling” is designed to cope with many
emerging workload challenges.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Depth-1

Depth-2

Depth-3

5
LLNL-PRES- 765450

Flux is specifically designed to embody our fully hierarchical
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

Scheduler Parallelism

Scheduler Specialization

Rich API set

Consistent API set

Flux framework

Global Sched

A

Sched 1

B

Sched 1.1 Sched 1.2

Remote Execution

Sched Framework
Scheduling

Policy Plugin B

Msg Idioms (RPC/Pub-Sub)

Overlay Networks
& Routing

Comms Message Broker

Service Module Plug-ins Protocol

Key-Value Store

Service Modules

Sched Framework

Remote Execution

Key-Value Store

Scheduling
Policy Plugin A

Service Modules

Pa
re

nt
 F

lu
x

In
st

an
ce

C
hi

ld
 F

lu
x

In
st

an
ce

Resource

Techniques Challenges

Job Queue
A B C D E F…

6
LLNL-PRES- 765450

Scheduler specialization solves the co-scheduling challenge.

§ Traditional approach
— A single site-wide policy being enforced for all jobs
— No support for user-level scheduling with distinct policies

§ Flux enables both system- and user-level scheduling under the same
common infrastructure.

§ Give users the freedom to adapt their scheduler instance to their needs.
— Instance owners can choose predefined policies different from system-level policies.
• FCFS/backfilling
• Scheduling parameters (queue depth, reservation depth etc)

— Create their own policy plug-in

7
LLNL-PRES- 765450

Scheduler parallelism solves the throughput challenge.

§ The centralized model is fundamentally limited.

§ Hierarchical design facilitates scheduler
parallelism.

§ Deepening the scheduler hierarchy allows for
higher levels of scheduler parallelism

§ Implementation used in our scalability evaluation:
— Submit each job in the ensemble individually to the root
— The jobs are distributed automatically across the

hierarchy.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux
Instance

Flux
Instance

Flux
Instance

Flux
Instance

Depth-
1

Depth-
2

Depth-
3

8
LLNL-PRES- 765450

A rich API set enables easy job coordination and
communication.

§ Jobs in ensemble-based simulations often require close coordination and
communication with the scheduler as well as among them.
— Traditional CLI-based approach is too slow and cumbersome.
— Ad hoc approaches (e.g., many empty files) can lead to many side-effects.

§ Flux provides well-known communication primitives.
— Pub/sub, request-reply, and send-recv patterns

§ High-level services
— Key-value store (KVS) API
— Job status/control (JSC) API
— KZ stdout/stderr stream API

9
LLNL-PRES- 765450

A consistent API set facilitates high portability.

§ Flux’s APIs are consistent across different platforms

§ Effort for porting and optimizing Flux itself for a new environment is small
— Linux
— Require the lower-level system to provide the Process Management Interface (PMI)

10
LLNL-PRES- 765450

Scheduler specialization addresses co-scheduling
challenges in Cancer Moonshot Pilot2 on Sierra

§ The machine-learning module evaluates the
top n candidate patches for MD simulations.

§ Integrate Flux into Maestro workflow
manager to start and stop jobs accordingly

§ Maestro adapter to Flux
— Specialize the policy to be non-node-exclusive

scheduling for complex co-scheduling
— At least 5 different logically separate jobs, each

with CPU and/or GPU requirements on every node
— Handle the volume of jobs using simple hierarchical

scheduling

Pilot2 workflow architecture

11
LLNL-PRES- 765450

Scheduler specialization
solves the co-scheduling
challenge

DDFT Macro-Scale SimulationDatabrokerPatch
Creator

Workflow
Manager

CG Setup CG Setup CG Setup CG Setup CG Setup CG SetupCG Setup CG Setup CG Setup CG Setup

CG Setup CG Setup CG Setup CG Setup CG Setup CG SetupCG Setup CG Setup CG Setup

Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux

Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux

Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux

CG Setup

Node
Socket
CPU
GPU

CG Analysis
CG Run
CG Setup
DDFT

Patch Creator
Databroker

Workflow Manager

Hardware Jobs

Flux

12
LLNL-PRES- 765450

Deepening scheduler hierarchy can significantly improve
job throughput.

UQ workflowStress test

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux
Instance

Flux
Instance

Flux
Instance

Flux
Instance

Depth-
1

Depth-
2

Depth-
3

• Depth-1: allocation
level scheduler only

• Depth-2: spawns
additional node-level
schedulers

• Depth-3: further
spawns core-level
schedulers

13
LLNL-PRES- 765450

The changes in resource types are equally challenging.

§ Problems are not just confined to the
workload/workflow challenge.

§ Resource types and their relationships are
also becoming increasingly complex.

§ Much beyond compute nodes and cores...
— GPGPUs
— Burst buffers
— I/O and network bandwidth
— Network locality
— Power

PFS BW Capacity

14
LLNL-PRES- 765450

The traditional resource data models are largely
ineffective to cope with the resource challenge.
§ Designed when the systems are much simpler

— Node-centric models
— SLURM: bitmaps to represent a set of compute nodes
— PBSPro: a linked-list of nodes

§ HPC has become far more complex
— Evolutionary approach to cope with the increased complexity
— E.g., add auxiliary data structures on top of the node-centric data model

§ Can be quickly unwieldy
— Every new resource type requires new a user-defined type
— A new relationship requires a complex set of pointers cross-referencing different types.

15
LLNL-PRES- 765450

Flux uses a graph-based resource data model to
represent schedulable resources and their relationships.
§ A graph consists of a set of vertices

and edges
— Vertex: a resource
— Edge: a relationship between two resources

§ Highly composable to support a graph
with arbitrary complexity

§ The scheduler remains to be a highly
generic graph code. Containment subsystem

Network connectivity subsystem

16
LLNL-PRES- 765450

Flux’s graph-oriented canonical job-spec allows for a
highly expressive resource requests specification.
§ Graph-oriented resource requirements

— Express the resource requirements of a program to the scheduler
— Express program attributes such as arguments, run time, and task

layout, to be considered by the execution service

§ cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[18]

§ slot is the only non-physical resource type
— Represent a schedulable place where program process or

processes will be spawned and contained

§ Referenced from the tasks section

17
LLNL-PRES- 765450

Flux maps our complex scheduling problems into graph
matching problems.

Traverse, match and score

18
LLNL-PRES- 765450

Flux significantly addresses emerging workflow and
resource challenges on high-end HPC systems.
§ Scheduling today’s HPC centers are hampered by two broad categories of

technical challenges: the workflow and resource challenges

§ Flux’s fully hierarchical scheduling comprehensively addresses workflow
challenges.

§ Flux is powering up the production runs of the major science runs on
LLNL’s Sierra, pre-exascale system.

§ Flux’s graph-based resource model and jobspec lays the foundation for
addressing the resource challenge.

19
LLNL-PRES- 765450

Resources

§ flux-core:https://github.com/flux-framework/flux-core

§ flux-sched: https://github.com/flux-framework/flux-sched

§ Fully hierarchical scheduler: https://github.com/flux-framework/flux-hierarchy

§ Workflow examples: https://github.com/flux-framework/flux-workflow-examples

§ Quick guide: https://github.com/flux-framework/flux-framework.github.io

https://github.com/flux-framework/flux-core
https://github.com/flux-framework/flux-sched
https://github.com/flux-framework/flux-hierarchy
https://github.com/flux-framework/flux-workflow-examples
https://github.com/flux-framework/flux-framework.github.io

20
LLNL-PRES- 765450

We use graph filtering and pruned searching to manage
the graph complexity and optimize our graph search.
§ The total graph can be quite complex

— Two techniques to manage the graph complexity
and scalability

§ Filtering reduces graph complexity
— The graph model needs to support schedulers

with different complexity
— Provide a mechanism by which to filter the graph

based on what subsystems to use

§ Pruned search increases scalability
— Fast RB tree-based planner is used to implement

a pruning filter per each vertex.
— Pruning filter keeps track of summary information

(e.g., aggregates) about subtree resources.
— Scheduler-driven pruning filter update

Filtering

Containment+Network Containment

Pruning

Prune filter
tracks available
node count in
aggregate at the
subtree

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

