CX_QUAD CORTEX Board v1 Ning Gizo and Gizcome Indiver NCS III (2011) | \$752

Mixed-signal neuromorphic VLSI devices for spiking neural network

Ning Qiao Institute of Neuroinformatics University of Zurich and ETH Zurich

Jun 20, 2018 ADAC6 Workshop

Ning Qiao

Neuromorphic Cognitive Systems

INI|UZH|ETH|Zürich

Outlines

- Brain inspired computing
- Neuromorphic engineering
- Analog synapse and neuron circuits
- Multi-core Neuromorphic architectures
- Applications

The cost of current computing technologies is not sustainable

- In 2017 > 10 zettabytes of data were produced.
- IT infrastructures and consumer electronics absorbed > 10% of the global electricity supply.
- By 2025, over 50 billion of Internet-of-Things (IoT) devices will be interconnected.
- Over 180 zettabytes of data will be generated annually, potentially leading to a consumption of one-fifth of global electricity.

- nature

EDITORIAL · 06 FEBRUARY 2018

Big data needs a hardware revolution

Artificial intelligence is driving the next wave of innovations in the semiconductor industry.

Current trends in computing HWs

Ning Qiao

Neuromorphic Cognitive Systems

INI UZH ETH Zürich

Brain-Inspired computing

1mg weight 1mm³ volume 960'000 neurons 10e-15 J/spike <100 uW

- Slow, noisy and variable processing elements
- Massively parallel distributed computation, local connectivity
- Real-time interaction with the environment
- Complex spatio-temporal pattern recognition
- Foraging, navigation, language, and social

behavior

Neuromorphic Computing vs. Neuromorphic Engineering

Neuromorphic "computing"

- Dedicated VLSI hardware.
- High performance computing.
- Application driven.
- Conservative approaches.

Neuromorphic engineering

- Fundamental research.
- Deeply rooted in biology.
- Emulation of neural function.
- Subthreshold analog and asynchronous digital.

Current trends in neuromorphic processors

Not so radically different after-all (not solving the von Neumann bottleneck problem)

Ning Qiao

Neuromorphic Cognitive Systems

INI UZH ETH Zürich

Current trends in neuromorphic processors

Not so radically different after-all (not solving the von Neumann bottleneck problem)

Ning Qiao

Neuromorphic Cognitive Systems

"Listen to the silicon" (original approach) Mixed-signal analog/digital neuromorphic systems

- Analog/digital computation, digital asynchronous communication.
- Directly emulate the physics of neural systems.
- Massively parallel collections of non-linear circuits.
- Realistic neural and synaptic dynamics
- Distributed memory
- Co-localized memory and computation

Ning Qiao

Channel current-voltage relationships

Ning Qiao

Neuromorphic Cognitive Systems

INI UZH ETH Zürich

Analog circuits Direct emulation of synaptic dynamics

Ning Qiao

Neuromorphic Cognitive Systems

INI UZH ETH Zürich 11

Analog circuits

Direct emulation of neuron dynamics

Ning Qiao

Neuromorphic Cognitive Systems

Spike-based plasticity VLSI implementation

Ning Qiao

Cortical networks: a high degree of clustering

Pyramidal Cell of Layer 3 of Cat Visual Cortex. Dendrites (Green), Axon (Red), Clusters of Boutons (Black) in Layer 3 and 5. Scale bar, 500 µm

[R.J. Douglas and K.A.C. Martin, Neuron, 2007]

Ning Qiao

Neuromorphic Cognitive Systems

Minimize memory requirements:

 $2\sqrt{F} \times \log_2(C) \times \log_2(N)$

ntermediate nodes

1..N/C

Neuror

1..N

ne cluster size: C

two-stage routing

1..N

bits/neuron

INI UZH ETH Zürich

[Moradi and Indiveri 2014]

Memory optimized multi-core neural architecture

Hierarchical routing with heterogeneous memory structures

- Two-stage + 2D tree + 2D mesh multi-cast routing schemes using both source-address and destination-address encoding.
- Fully asynchronous hierarchical routers for intra-core (R1), inter-core (R2) and inter-chip (R3) connectivity.
- Embedded asynchronous CAM and SRAM cells distributed across and within cores.

Ning Qiao

Co-localized memory and computation

FD-SOI design, ready for beyond CMOS technology

- Multiple parallel I/O pathways
- Multiple distributed asynchronous SRAM LUTs
- Distributed multi-bit TCAM cells
- Capacitors for state dynamics and learning
- Ideal for integration with (binary) resistive memories
- Ideal for integration with (learning)
 memristive devices
- Ideal for integration in 3D VLSI technology

Latest NP chip specs

	IBM TrueNorth	DynapSEL
Technology	28nm CMOS	28 nm FDSOI
Supply Voltage	0.7V	0.73 V
Neuron Type	Digital	Analog
Neurons per core	256	256
Core Area	0.094 mm ²	0.36 mm ²
Computation	Time multiplexing	Parallel processing
Fan In/Out	256/256	2k/8k
Synaptic Operation / Second / Watt	46 GSOPS/W	300 GSOPS/W ^{*1}
Energy per synaptic event	10 pJ	<2 pJ*2
Energy per spike	3.9 nJ	<1.68 nJ*3

• 8X Fan-in / 32X Fan-out for more complex spiking networks

• 13X more power efficient

© aiCTX, Confidential

A large-scale, multi-core, neuromorphic processor **DynapSEL** in 28 nm FDSOI, is reported in ISSCC 2018

Neuromorphic Cognitive Systems

Neural dynamics

with appropriate time constants

Paradigm shift

- Radically different from von Neumann architectures.
- Co-localized memory and computation.
- No virtual time (time represents itself).
- Data/event driven computation.

"Slow" (biologically plausible) time constants

- For interacting with the environment in real-time.
- Inherently synchronized with the real-world "natural" events.
- To process "natural" sensory signals efficiently (low bandwidth/power).

Neuromorphic Cognitive Systems

Event-based convolutional network

Ning Qiao

Neuromorphic Cognitive Systems

INI UZH ETH Zürich

Real-time autonomous behaving agents

input laver	symbol durati	on=30ms		
💽 🏴 🎊 😻				
feature layer				
		合作资料数		
Mar and And Ma	Mar an Mar Mary	ing and price light the	win wat the way	
output layer	td2≈8ms (td3≈10ms		p	ooling layer
	SALE IN CONTRACT OF A CONTRACT OF	an a	NICOLOGICAL STRATEGY IN THE SECOND INTERVALUE INTO SECOND IN THE SECOND INTO S	

symbol duration=30ms

Ning Qiao

Neuromorphic Cognitive Systems

INI UZH ETH Zürich

Connecting neuromorphic processors to neuromorphic sensors and robots

Ning Qiao

Neuromorphic Cognitive Systems

Hardware preliminary (state-of-the-art) results

Ning Qiao

Neuromorphic Cognitive Systems

Distributed Artificial Intelligence

Autonomous sensory-motor systems

embedded systems & emerging memory technologies

Brain Machine Interfaces & prosthetics

Team Work: Institute of Neuroinformatics

- Ning Qiao (INI)
- Yulia Sandamirskaya (INI)
- Lorenz Müller (INI)
- Melika Payvand (INI)
- Elisa Donati (INI)
- Dongchen Liang (INI)
- Raphaela Kreise (INI)
- Moritz Milde (INI)
- Marc Osswald (inSightness)

Ning Qiao

- Dora Sumislawska (GeorgiaTech, USA)
- Fabio Stefanini (Columbia Univ., USA)
- Jonathan Binas (Univ. Montreal, CA)
- Emre Neftci (UC Irvine, USA)
- Saber Moradi (Yale, USA)
- Hesham Mostafa (UCSD, USA)
- Chiara Bartolozzi (IIT, Italy)
- Elisabetta Chicca (Univ. Bielefeld, DE)
- Stefano Fusi (Columbia Univ., USA)

Neuromorphic Cognitive Systems

Technology-transfer effort to commercialize

- Dr. Ning Qiao
- Prof. Giacomo Indiveri
- Dr. Kynan Eng
- Dr. Dylan Muir
- Dr. Sadique Sheik
- Dr. Qian Liu
- Felix Bauer
- Carsten Nielsen

Ning Qiao

- Ole Richter
- Anita Tuomi

Neuromorphic Cognitive Systems

Thank you for your attention

Spiking Neuron Network (SNN)

Ning Qiao

x4

Neuromorphic Cognitive Systems

INI|UZH|ETH|Zürich

Spiking Neuron Network (SNN)

Neuromorphic Cognitive Systems

INI UZH ETH Zürich 28

Co-localized memory and computation FD-SOI design, ready for beyond CMOS technology

Intel i7-4960X

DYNAP-SEL

- No I/O bottleneck
- No memory bottleneck

Ning Qiao

Neuromorphic Cognitive Systems

INI|UZH|ETH|Zürich

A closed-loop bi-directional BMI

Ning Qiao

Neuromorphic Cognitive Systems

INI|UZH|ETH|Zürich