
High Performance Containers

Convergence of Hyperscale, Big Data and Big Compute

Technical Account Manager, Docker
Christian Kniep

Brief Recap of Container Technology

Brief History of Container Technology

Jails Zones Namespaces Docker

VServer cgroups LXC

Container Runtime and Image Format Standards, Jeff Borek, Stephen Walli, KubeCon Dec/2017

FreeBSD Jails
expand on
Unix chroot to
isolate files

Linux-VServer
ports kernel
isolation, but
requires
recompilation

Solaris Zones
bring the
concept of
snapshots

Google introduces
Process
Containers, merged
as cgroups

RedHat adds user
namespaces,
limiting root access
in containers

IBM creates LXC
providing user tools
for cgroups and
namespaces

Docker provides
simple user tools
and images.
Containers go
mainstream

2000

2001

2004

2006

2008

2008

2013

Linux Namespaces 101
Short Recap

Example PID
Processes Isolation

● host sees all processes with real PID from the Kernels perspective

● first process within PID namespace gets PID=1

Host

cnt0

ps -ef

cnt1

start.sh

java -jar ..

cnt2

start.sh

java -jar ..

health.sh

Resource Isolation of Process Groups
7 as of Kernel 4.10

1. MNT: Controls mount points

2. PID: Individual process table

3. NET: Network resources (IPs, routing,...)

4. IPC: Prevents the use of shared memory between processes

5. UTS: Individual host- and domain name

6. USR: Maps container UID to a different UID of the host

7. CGRP: Hides system cgroup hierarchy from container

Container Namespaces

A starting container gets his own namespaces.

PIDMNT IPCNET USR

Host

UTS CGRP

cnt0 cnt1 cnt2

But can share namespaces with other containers or even the host

All In

When using all host namespaces - we are on the host (almost like ssh).

PIDMNT IPCNET USR

Host

UTS CGRP

cnt0

$ docker run -ti --rm \
 --privileged \
 --security-opt=seccomp=unconfined \
 --pid=host \
 --uts=host \
 --ipc=host \
 --net=host \
 -v /:/host \
 ubuntu bash
root@linuxkit-025000000001:/# chroot /host
/ # ash
/ #

CGroups

While namespaces isolate,

Control Groups constraint resources.

CGroups / Filesystem Layering
Short Recap [cont]

Overlay Filesystem
Compose a FS from multiple pieces

ubuntu:16.04

openjre:9-b114

appA.jar:1.1 appB.jar

ARG FROM openjre:9-b114
COPY appB.jar /usr/local/bin/
CMD [“java”, “-jar”, “/usr/local/bin/appB.jar”]

ARG FROM openjre:9-b114
COPY appA.jar /usr/local/bin/
CMD [“java”, “-jar”, “/usr/local/bin/appA.jar”]

FROM ubuntu:16.04
ARG JRE_VER=9~b114-0ubuntu1
RUN apt-get update \
 && apt-get install -y openjdk-9-jre-headless=${JRE_VER} \
 && java -version

openjre:9-b117

Stacked View

Hardware

Host Kernel

Userland

Services Hypervisor

Kernel

Userland

Services1 Services2

Userland

Kernel

Hardware

Host Kernel

Userland

Services

Userland

appB appC

Userland

Cnt1 Cnt2

VM1 VM2

Traditional Virtualization os-virtualization

V
M

-s
ho

rtc
ut

s
(P

V
M

, p
ci

-p
as

st
hr

ou
gh

)

Traditional Virtualization

hardware

kernel

hypervisor

kernel

Interface View

libs

From Application to Kernel

application

libs

application
lib-calls

102
syscalls

101
hypercalls

hardware

kernel
hw-calls

container

os-virtualization

Why apply Containers to HPC?

SciOps

Peer Review +
Collaboration

Researcher
Workstation

HPC Compute
Nodes

Bridging the Technology Gap
Containers removing barriers of entry:

● Hardware Expertise

● Software Expertise

● Workflow/System Integration

● CapEx / OpEx

How are containers used in HPC today?

Current Solutions

Lack of HPC focus gave birth to HPC workarounds.

ShipBuild

Development Build hub.docker.com

HPC Runtimes

Pull Image

Extract File-System Store on /share

chroot /container

Scientific Environments

Scientific end-users expect the environment to be set up for them, without prior knowledge about the

specifics of the cluster.

Service Cluster Compute Cluster
Storage

/home/
/proj/

Engine
rank0

Engine
rank1

Engine
rank2

Engine
AI

Service vs Batch Scheduling

Traditionally container workloads are scheduled in a descriptive manner, as tasks (pods) on worker nodes.

HPC schedules a workloads as a batch job on multiple nodes.

Docker Engine

SWARM Kubernetes

Shared System

process1 process2

node0

Shared System

job-process2

agent

nodeN

job-process2

agent

manager

controller Distributed
Process

HPC Workload Scheduler
DEMO!

Current Solutions [cont]
HPC-specific workaround

+ Drop-in replacement as it wraps the job

- Not OCI compliance

- No integration with upstream container ecosystem

- hard to combine with new workloads

node0

Shared System

job-process2

HPC-runtime

agent

nodeN

job-process2

agent

manager

controller

HPC Challenges

Kernel-bypassing Devices

To achieve the highest performance possible the kernel got squeezed out of the equation for

performance-critical parts.

Hardware

OS Kernel

Userland

ETH

TCP/IP

GPU

CUDA

IB

OFEDlibnet

Application

The Stack

runc

containerd

Engine

Client

--device=/dev/nvidia0

"Devices": [{

 "PathOnHost": "/dev/nvidia0",

 "PathInContainer": "/dev/nvidia0",

 "CgroupPermissions": "rwm"

}],

"devices": [{

 "path": "/dev/nvidia0", "type": "c",

 "major": 195, "minor": 0,"fileMode": 8630,

 "uid": 0, "gid": 0

 },

"hooks": { "prestart": [{"path": “/usr/local/bin/nvidia.sh"}]}

Houdini Plugin

Houdini Plugin [cont]
DEMO!

HPC Opportunities

Leveraging HPC in the Enterprise / Enterprise in HPC

Image Registry Security scan
& sign

Traditional

Third Party

HPC Workloads

docker store

 Control
Plane

HPC @Docker: What’s next?

Convergence of AI and HPC

advanced

Multi Node,
Shared Storage

intermediate

Single Node,
Shared Storage

beginnerC
om

pl
ex

ity

Maturity

Single node,
Local Storage

non-GPU

MPI

shared file-system

device passthrough

a.k.a. HPC!

Evidence for AI/DL trends

Steps
Low-hanging and high hanging fruit

Device Passthrough

Rather simple

Shared File-System

get UID:GID(s) from somewhere

MPI enablement

● Engine vs. Orchestrator vs. Workload Manager: Who is in charge?

● including PMIx into the engine?

● simple batch scheduling in SWARM?

Docker Ecosystem Goodies

● Secure Supply Chain

● Reproducible, OS idenpenced science

Docker for Science

