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Powerful because:
• structure and dynamics in atomistic detail

Challenging because:
• fixed system size: strong scaling needed
• always more simulation needed than possible
• force-field (model) accuracy can be limiting
• results can be difficult to analyse

Molecular Dynamics of biomolecules
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Molecular Dynamics

Newton’s equation of motion

Simple (symplectic) integrator

Fundamental issue: sequential problem

                                Δt ~ 1 fs, timescales of interest μs - s ⇨   need 109 - 1015 steps!
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Computational cost mostly in computing the forces

Fi = �dU
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We need the force

on each particle i pair-sum: largest cost,


use cut-off (and long-range

electrostatics algorithm)
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To reach 109 - 1015 steps we need to minimise the walltime per step

The best MD codes in the world are at 100 microseconds per step (on a 
single node):
• at ~ 200 atoms per CPU core   ⇨   we run in L1/L2 cache
• at ~ 3000 atoms per GPU
• but systems of interest are usually > 100000 atoms

Extreme demands on hardware and parallelisation libraries (MPI, OpenMP):
• ideally overheads should be <  1 microsecond

The MD strong scaling challenge
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• Started as hardware+software project in Groningen (NL)
• Now core team in Stockholm and many contributors world-wide
• Focus on high performance: efficient algorithms, SIMD & GPUs
• Good parallel scaling
• Compiles and runs efficiently on nearly any hardware
• Open source, LGPL
• Incorporate important algorithms for flexibly manipulating systems
• C++, MPI, OpenMP, CUDA, OpenCL
• C++ and Python API in the works

GROMACS
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Classical 1x1 neighborlist on 4-way SIMD

4x4 setup on 4-way SIMD

4x4 setup on 8-way SIMD

4x4 setup on SIMT-8
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Highly optimised vectorization:

Small C++ SIMD layer with highly 
optimised math functions for:
SSE2/4, AVX2-128, AVX(2)-256, 
AVX-512, ARM, VSX, HPC-ACE

CPU kernels reach 50% of peak

CUDA and OpenCL need 
separate kernels
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We can  
optimize the 
size of this buffer

Larger buffer  
means more 
calculations, but 
we can update 
the neighbor list 
less frequently 

Atom clustering (regularization) and pair list buffering
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We can  
optimize the 
size of this buffer

Larger buffer  
means more 
calculations, but 
we can update 
the neighbor list 
less frequently 
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New in GROMACS-2018:  
dual-pair list: 
• reduces overhead 
• less sensitive to parameters

Atom clustering and pair list buffering
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GROMACS has efficient parallelization of all algorithms using MPI + OpenMP

OpenMP is (performance) portable, but limited:
• No way to run parallel tasks next to each other
• No binding of threads to cores (cache locality)

Need for a better threading model, requirements:
• Extremely low overhead barriers (all-all, all-1, 1-all)
• Binding of threads to cores
• Portable

Intra-rank parallelisation: OpenMP
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8th-shell domain decomposition:
• minimizes communicated volume
• minimizes communication calls
• implemented using aggregation of data 

along dimensions
• 1 MPI rank per domain
• dynamic load balancing

Question: still the best approach for 
networks that support many messages?

Spatial decomposition

Hess, Kutzner, Van der Spoel, Lindahl; J. Chem. Theory Comput. 4, 435 (2008)
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GPU
CUDA

CPU 
OpenMP 
threads

H2D
pair list

Average CPU-GPU overlap 75-90%

Bonded F
Integration,
Constraints

Non-bonded F

Wait

Idle

DD
Pair search

Idle

DD & Pair search: every 80-150 steps

MD step
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x,q

Clear F
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Rolling
pruning

Prune
pair list

Reduce F

Idle Spread 3D-FFT Solve 3D-FFT Gather

D2H
F,E

D2H
F,E

pull/FE/etc.

100-500 μs 
New in GROMACS-2018: PME on GPU!
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Lignocellulose benchmark
• 3.3 million atoms
• No long-range electrostatics!
• machine: Piz Daint at CSCS

• Cray XC50
• NVIDIA P100 GPUs
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GROMACS strong scaling



Slide

bioexcel.eu

Partners Funding

At 100s of microseconds per step:
• The 3D-FFT in PME electrostatics
• MPI overhead

• we need MPI_Put_notify()
• OpenMP barriers take significant time
• Load imbalance
• CUDA API overhead can be 50% of the CPU time
• Too many GROMACS options to tweak manually

Strong scaling issues
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140000 atom ion channel

on Piz Daint xc
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All examples up till now without long-range 
electrostatics, but needed in most cases
We need all-vs-all Coulomb interactions

All MD codes use Particle-mesh Ewald (PME) for 
electrostatics
PME uses a 3D-FFT, 643 - 1283 grid points
Issues:
• The 3D-FFT requires two grid transposes that require 

All-to-All communication in slabs
• Pencil decomposition clashes with 3D decomposition
• 3D-FFT scaling is the bottleneck for MD

Long-range electrostatics GROMACS Multiple-Program

Multiple-Data parallelisation

improves scaling by a factor 4

8 PP/PME ranks

6 PP ranks 2 PME ranks

3D-FFT

communication
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in use in MD computational 
cost pre-factor communication 

cost
Ewald 

summation since 70s O(N3/2) small (FFT) high

PPPM / Particle 
Mesh Ewald since 90s O(N log N) small (FFT) high

Fast Multipole 
Method not yet O(N) larger low

Multigrid 
Electrostatics 2010 O(N) larger low

Long-range electrostatics methods for molecular dynamics

we recently solved the energy conservation issue
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Rio Yokota

Tokyo Tech

FMM scheme
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The accuracy of FMM is 
controlled by
• the order of the expansion(s)
• the theta parameter

Main issue for FMM in MD:
• We want low accuracy (or 

better: high speed)
• We want energy conservation
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Figure 3: Extended cells.

θ=0.50 θ=0.35

θ=0.25 θ=0.20

Figure 4: Number of near neighbors increases as ✓ decreases.
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FMM	for	molecular	dynamics

direct approx.
p : Order of expansion
θ : Opening angle

This combination yields
the same accuracy

But even for the same accuracy the ones
where θ is small has less energy drift
because the jump is further away

What happens if we
smooth the jump?

� =
1

r

work by

Rio Yokota
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Main physics issue with FMM in MD:
• All atoms have partial charges, but molecules are mostly locally neutral
• The sharp boundaries of FMM cells introduce charges at the boundaries

qO = +0.82

qH= -0.41qH = -0.41

qcell = -0.41 qcell = +0.41

a neutral water molecule crossing 2 FMM cells

at long distance

water is a dipole
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q=0 q=0 q=0

q−multipole
q−q

S1

V = s1(x)V1(x) + s2(x)V2(x)

F = �rV

= s1(x)F1(x) + s2(x)F2(x)

�s01(x)V1(x)� s02(x)V2(x)

FMM regularization: add smooth overlap between cells

orig. idea: Chartier, Darrigand Faou,

BIT Num. Math. 50, 23 (2010)
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• Davoud Saffar Shamshir Gar has analyzed the accuracy of regularization

• Currently: 2D FFM with full regularization

• Results for charge pairs with θ=0.35 = second nearest neighbors, 8 atoms 

per cell
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Real water shows the same

decrease of coefficients 
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Computational cost of regularization

• 1/2 regularization width = 1/4 cell
• Second nearest neighbor direct
• Direct pair cost factor (2.25/2)3 = 1.42

• At 0.473 nm (10.6 atoms) cell free with LJ
• Multipole lowest level: factor 1.53 = 3.4  

• But we get factor 5 more accuracy with P=4
• And we get energy conservation!
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Conclusions

• PME 3D-FFT is limiting scaling
• FMM has better communication characteristics
• FMM is a good fit for SIMD/GPU acceleration
• FMM regularization gives energy conservation
• FMM regularization improves accuracy
• FMM fits wells with GROMACS pair computation  

• We are implementing optimized, regularised FMM

Is there a better threading/tasking model than OpenMP on the horizon?
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