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FOM Focus Group Groningen ‘Next Generation 
Organic Photovoltaics’

•  Aim: 
–  Deliver the science for highly efficient, long-lived, and low-

cost organic photovoltaic devices

•  Challenge:
–  Charge separation at the donor/acceptor interface

•  Approach:
–  Multi-disciplinary:

•  Material development
•  Physical characterisation (OPV device physics)
•  Theoretical modelling
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Theoretical challenges

•  Predict molecular properties that determine the dielectric 
properties of the interface
–  Dipole moments
–  Polarisability

•  Modelling of the donor/acceptor interface
–  Molecular Dynamics simulations

•  Time scales of molecular motion
•  Calculation of the excited states

–  Theoretical methods
–  Influence of molecular structure
–  Influence of the embedding using multiscale modelling

•  Approximation of the electron/energy transfer rates
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Singlet fission

SF: spin allowed radiationless process

It is attractive to build the wavefunctions of 
the solid from state-specific molecular 
wavefunctions

hν

 M. B. Smith, J. Michl, Chem. Rev. 110 (2010), 6891
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Singlet fission rate

•  Fermi Golden rule in diabatic representation (Marcus theory)

–  Electronic coupling between diabatic states
•  Directly accessible with our non orthogonal CI approach

•  Adiabatic representation: Non-adiabatic couplings (Landau-
Zener model)

–  Potential energy surfaces and conical intersections/
crossings P.F. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem. 100 (1996), 13148

F. Bernardi, M. Olivucci, and M.A. Robb, Chem. Soc. Rev. 25 (1996), 321
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Cluster approximation for solids

•  Describe solid in terms of molecular wavefunctions

•  Compute wavefunctions of each molecule for specific states 
(CASSCF)

•  Form many-electron basis functions (S0S0, S0S1, 1TT, CT), each 
describing a particular combination of molecular states
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Non orthogonal configuration interaction
•  Describe wavefunctions of a cluster of molecules in terms of 

(localised) molecular many-electron basis functions (MEBF)
–  MEBFs are spin-adapted antisymmetrised products of 

molecular wavefunctions:

–  Molecular wavefunction can be any multiconfigurational 
wavefunction

ΦAB
KL = A(ΦA

K ×ΦB
L )

Ψ0 :Ground state
Ψ1 :Singlet excited state
ΨT : Triplet excited state
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Non Orthogonal Configuration Interaction

•  Wavefunction expanded as:                  with Φi a many-electron basis 

function ((MEBF) Slater determinant, or combination thereof)

•  The orbitals χj in a MEBF are not orthogonal, making the many-
electron MEBFs also not orthogonal:  

•  The non orthogonality of the orbitals within one MEBF and of the 

orbitals in a different MEBF complicates the calculation of the 

required Hamiltonian matrix elements

•  Solve                           to get energies and Ψ (ci’s)

Ψ = ciΦi
i=1

N

∑

Φi Φ j = Sij

Φi H Φ j

(H − ES)(c) = 0
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Advantages of this NOCI
•  Inclusion of orbital relaxation effects
•  Inclusion of (static) correlation effects
•  Short wavefunction expansions
•  Chemical interpretability

–  Description of system in terms of predefined states

•  Con: no simple Slater rules for the computation of matrix 
elements of the Hamilton operator in the MEBF basis

n→π *

OO

π →π *
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Computational Aspects of our NOCI approach

•  Typical number of           ~ 20 

–  H/S matrices contain ~ 210 elements of the type  
                      and

•  If          contains ~ 500 determinants, then

•   

•  Approximately           elements                 have to be calculated 

for one matrix element                      

•  Aim for high level of parallelism

•  Easy to parallelize

ΦAB
KL

ΦAB
KL H ΦAB

′K ′L ΦAB
KL ΦAB

′K ′L

ΦA
K

 ΦA
K × ΦB

L = ΦAB
KL ∼ 2.5 i105

ΦAB
KL H ΦAB

′K ′L = cicj Δi H Δ j
j
∑

i
∑
107 Δi H Δ j

ΦAB
KL H ΦAB

′K ′L
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Technical Aspects
•  Evaluation of                 with non orthogonal orbitals

–    

–  First and second order co-factors needed

•  With corresponding orbitals, then  

and   

•  No 4-index, but transform co-factors to common AO basis in 

which the corresponding orbitals ci and di are expressed

•  SVD and matrix multiplications

•  Use GPUs

Δi H Δ j

Hij = hijS
(i, j )

i, j
∑ + [(ij | kl)− (ik | jl)]S(i, j ,k ,l )

j<l
∑

i<k
∑

ci d j = λiδ ij

S(i,i ) = λm
m≠i
∏ (S(i, j ) = 0 for i ≠ j)
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Performance old code

•  Test case I: 52 determinants, 1378 matrix elements Δi H Δ j
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The GronOR code

•  In collaboration with OLCF, based on the GNOME code

–  OpenACC for GPU off-loading
–  Master-slave model with task based load balancing
–  MPI parallelization with point-to-point non-blocking 

communication
–  Avoid global synchronization and global reduction operations
–  Fault resilient implementation
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GronOR Master-Slave Process Layout
Master	Process	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

S
lave	

Group	1	 Group	2	 Group	3	 Group	…	 Group	N	

Each process group has the same (user specified) number of slave processes
Each process group should have sufficient aggregate memory to hold all 
integrals: One-electron integrals are duplicated

Two-electron integrals are distributed
Consequences of Node Faults: All processes on a failing node fail

If a slave process fails, the entire group to 
which it belongs will fail 
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Test case: Naphthalene dimer

•  Neglect of dynamical correlation (S1 too high)
•  Endoergic

E (eV)

ΨA
0

ΨA
1

ΨA
T

0.00

6.54

8.64

ΨB
0

ΨB
1

ΨB
T

ΨA
0

ΨB
0

6.54

×

×

×

×

Anti-symmetrized products of CAS(4,4) wavefunctions
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Electronic couplings

S0S1 S1S0

S1S0 52 -
T1T1 6 6

In meV

Couplings in expected range
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Performance of GronOR

Benchmark run on 
Summit, requiring 
112,867,800 matrix 
element evaluations

•  Each node with 6 MPI 
ranks

•  1 GPU per rank
•  Good scalability with 

number of nodes
•  Performance 

improvement from 
GPU is 6.8x
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Biradicaloid dimer

E (eV)
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Anti-symmetrized products of CAS(2,2) wavefunctions
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Stack A

MEBF Erel(eV) MEBF Erel(eV)
Â[AB] 0.00 Â[ATBT] 1.61
Â[ASB] 3.81 Â[A+B-] 4.49
Â[ABS] 3.81 Â[A-B+] 4.49

•  The relative energies of the cluster MEBFs

MEBF S[1] S[2] S'[1] S'[2]
Â[ASB] 0.50 0.50 0.45 0.50
Â[ABS] 0.50 0.50 0.45 0.50

Â[A+B-] + Â[A-B+] - - 0.09 0.00
Energy (eV) 3.72 3.90 3.64 3.90

•  The energies and weights of the diabatic states

N-N = 3.58 Å

N-N = 3.85 Å
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Electronic coupling between diabatic states (meV)

Ψ(S[1]) Ψ(S[2]) Ψ’(S[1]) Ψ’(S[2])

Stack A
Ψ( 1TT) 4.0 0.0 16.5 0.0
Ψ’(1TT) 6.9 0.0 11.8 0.0

Inter-
stack

Ψ(1TT) 0.4 0.1 0.2 0.3
Ψ’(1TT) 3.3 0.0 0.1 0.2

Primed states include virtual charge-transfer states

Inclusion of virtual CT states enhances the coupling
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Current applications

Cibalackrot

Acenes: anthracene, tetracene
Benzofurans
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Conclusions and outlook

•  Parallel NOCI program GronOR is working and ready to be used 
for interesting applications
–  Further optimizations are in progress
–  Better handling of integrals and CI lists

•  Molecular orbital basis
–  Inclusion of dynamical correlation

•  Biradicaloid is a suitable building block for singlet fission 
chromophores

•  Further studies:
–  Cibalackrot and other (small) SF molecules
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