

Load-store vs. Dataflow

Specialized hardware

The paradox of FPGA efficiency

Specialized hardware

Traditionally: register transfer level

```
always @ (posedge clk)
  if (start) begin
    out <= in + 1;
end</pre>
```


$$int c = a + b;$$

Single <u>floating point</u> operation

Nakayama, T. Hardware arrangement for floating-point addition and subtraction, 1993, US Patent!

High-level synthesis

float
$$y = (a + b) * (c + d);$$

Pipeline performance

No matter how deep the pipeline is a new result is produced every cycle

End goal: peak!

Parallelizing hardware in HLS

This is now the **full** runtime of the algorith

Parallel loops are **removed** from the iteration space!

$$C \approx IM$$

$$C \approx IM$$
 $F = fNP$

Performance corresponds to parallel hardware

Parallelizing hardware in HLS

Hardware optimization vs. software optimization?

Scalability transformations

- Vectorization
- Replication
- Streaming dataflow

We can implement massively parallel specialized hardware with HLS¹!

Pipeline colaescing

...but, like GPU-programming, we must be architecture-aware.

- Condition flattening
- Type demotion
-

Hardware scaling

For HLS, the base case is **bad** $\ensuremath{\mathfrak{S}}$

	Perf.	Speedup	
	[GOp/s]/	k elative	Cumulative
Naive	0.02	1×	_
Buffered [§2.5]	0.8	$40 \times$	_
Vectorized [§3.1, §4.2, §4.3, §4.4]	6.4	8×	$320 \times$
Replicated [§3.2, §3.3, §3.4]	227.8	36×	$11,400 \times$

[2D stencil]

	Perf.	Speedup	
	[GOp/s]	Relative	Cumulative
Naive	0.01	1×	_
Fused [§2.1, §2.6, §2.7, §4.2] Vectorized [§3.1]	0.4	$40 \times$	_
		8×	$320 \times$
Replicated [§3.2, §3.3, §3.4]	184.1	58×	$18,410 \times$

[Matrix multiplication]

Luckily, there are patterns ©	Perf.	Speedup	
	[GOp/s]	Relative	Cumulative
Initial [§4.2, §4.3]	0.9	1×	_
Interleaved [§2.2.1]	6.0	7×	_
Initial [§4.2, §4.3] Interleaved [§2.2.1] Replicated [§3.2, §3.3]	231.9	39×	258×

[N-body simulation]

HLS for FPGAs...

for_parallel $n \leftarrow 1$ to N do

| for_pipelined $m \leftarrow 1$ to M do

| for_parallel $p \leftarrow 1$ to P do

| $C[n,p] \leftarrow C[n,p] + A[n,m] \cdot B[m,p]$

...and beyond?

Thank you for your attention*!

*For more, see:

"Transformations of High-Level Synthesis Codes for High-Performance Computing" [arXiv 1805.08288]

