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FPGAs and Beyond.:
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. : . yplca 0 er Moore's law has déed at the age of 51 after an extended lliness.

""" — . - o o ik B = Y 1965, intel co-founder Gordon Moore made an observatiol mhemmne«o{componens
. : : a S eged cults was doubling every 12 months or so. Mareaver, o= 11

2003, that the number of transistors per chip that resulted in helmsp e per
nsistor was doubling every 12 months. in 1965, this meant that 50 transistors per chip affered
helmspef ansistor cost; Moore predicted that by 1970, this would rise to 1,000 components

per chip, and that the price per transistor would drop by 90 percent,

N b f with a It moce data and some simplfication, this observation became "Moore's law? the
u I I I e r 0 number of transistors per chip would double every 12 months.

Gordon Moore's observation was not driven by ai /P«! ia r sclentific or engineering necessity. oore’s original
It was a reflection on just how things happened to it. The silicon chip industry took note

and started using it not merely as 3 pvem tive ,bu asap ptive,
positive law: a target that the entire iIndustry should hit.
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Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
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Load-store vs. Dataflow

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Instruction Energy Breakdown

25p) 6pJ Control 70 pJ
I-Cache Access Register File Add

Access Source: Mark Horowitz, ISSC’'14

Static Dataflow (“non-von Neumann”)

Energy per operation: 1-3pJ
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Specialized hardware
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The paradox of FPGA efficiency

Control Registers
~100x

Comes from the
granularity

\Y4
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Specialized hardware

We must learn how to
program these
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Traditionally: register transfer level

Input reg Input reg

always ( (posedge clk)
if (start) begin
out <= in + 1; 1cyC|e

end

Output reg

int c=a + b;
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Single floating point operation

Logic

Transient

FPGA programming is hard*! s

Logic

Transient
register

float c=a + b;

[1] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for the Masses. Queue 11, 2, Pages 40 (February 2013), 13 pages.



v owien ETHzUrich
High-level synthesis

5

Pipelines

{float y=(@a+Db)”*(c+d); }
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Pipeline performance

[ Inverse throughput

[ #cycles to completion W \

L #operations in the pipeline

N \
-

~

\/
F=p-C/f
/

1 cycle per element, }

g hrough . . , regardless of pipeline depth!
[ Or:nverse t muf f‘gténcy is constant in the input ] 8 PP P
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No matter how deep the pipeline is
a new result is produced every cycle

-

Three goals as performance engineers?:
= Fully pipeline compute (i.e., /=1)

= Maximize useful computations p

= Saturate the pipeline
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End goal: peak!

Perform compute in every piece
of available logic — every cycle!!
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Parallelizing hardware in HLS

C[n’p] — C[n’p] + A[Tl, m] ) B[m’p]

This is now the full
runtime of the algorith

Parallel loops are

removed from the C~IM F=fNP Performance
iteration space! corresponds to
parallel hardware
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Parallelizing hardware in HLS

We can implement massively parallel
specialized hardware with HLS?!

...but, like GPU-programming, we
must be architecture-aware.
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Hardware Scallng For HLS, the base case is bad ® }

Perf. Speedup
[GOp/s] elative Cumulative
Naive 0.02 1X -
Buffered [§2.5] 0.8 40X — .
Vectorized [§3.1, §4.2, §4.3, §4.4] 6.4 8X 320X [ZD StenC| I]
Replicated [§3.2, §3.3, §3.4] 227.8 36X 11,400
Perf. Speedup
[GOp/s] Relative Cumulative
Naive 0.01 1X - . . . .
Fused [§2.1, §2.6, §2.7, §4.2] 0.4 40 _ [Matrix multlpllcatlon]
Vectorized [§3.1] 3.2 8X 320X
Replicated [§3.2, §3.3, §3.4] 184.1 58X 18,410%
[ Luckily, there are patterns © } Perf. Speedup

[GOp/s] Relative Cumulative
Initial [§4.2, §4.3] J 0.9 1X —
]

Interleaved [§2.2.1] 6.0 7X — [N-bOdy SimUIation]
Replicated [§3.2, §3.3 231.9 39X 258X
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HLS for FPGA:s...
FOOEED f N
= E
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for_parallel n < 1to N do
for_pipelined m < 1to M do

for_parallel p < 1 to P do
| Cln,p] < C[n,p] + Aln,m] - B[m, p]

L 4 @spcl_eth

ETH:zurich



AL R S FA AL v enien  ETHZziirich

...and beyond?
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Thank you for your attention*!

*For more, see:
"Transformations of High-Level Synthesis Codes for High-Performance Computing”
[arXiv 1805.08288]
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