
spcl.inf.ethz.ch

@spcl_eth

J. DE FINE LICHT, T. HOEFLER

FPGAs and Beyond:
Specialized Hardware Architectures for HPC with High-Level Synthesis

spcl.inf.ethz.ch

@spcl_eth

2

spcl.inf.ethz.ch

@spcl_eth

3

Load-store vs. Dataflow

Memory

Cache

RegistersControl

x = a + b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y = (a + b)·(c + d)

a b

+

x

a b c d

a+b c+d

y

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non-von Neumann”)

spcl.inf.ethz.ch

@spcl_eth

4

Specialized hardware

Memory

+

c d ya b

+

x

a b c d

spcl.inf.ethz.ch

@spcl_eth

5

The paradox of FPGA efficiency

Memory

+

c d ya b

+

x

a b c d
Memory

Cache

RegistersControl

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x

~100x

~0.05x?

Comes from the
granularity

spcl.inf.ethz.ch

@spcl_eth

6

Specialized hardware

Memory

+

c d ya b

+

x

a b c d

We must learn how to
program these

spcl.inf.ethz.ch

@spcl_eth

7

Traditionally: register transfer level

Input regInput reg

Output reg

Logic 1 cycle

always @(posedge clk)

if (start) begin

out <= in + 1;

end

int c = a + b;

spcl.inf.ethz.ch

@spcl_eth

Nakayama, T. Hardware arrangement for floating-point addition and subtraction, 1993, US Patent 5,197,023.

8

Single floating point operation
RegReg

Reg

LogicLogic

Transient
register

Transient
register

Logic

…
float c = a + b;

[1] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for the Masses. Queue 11, 2, Pages 40 (February 2013), 13 pages.

FPGA programming is hard1!

spcl.inf.ethz.ch

@spcl_eth

Memory

+

c d ya b

+

x

a b c d

9

High-level synthesis

float y = (a + b) * (c + d);

++

*

a b dc

y

compute

y

a b c d

Circuits

Operations

Pipelines

spcl.inf.ethz.ch

@spcl_eth

10

Pipeline performance

ops

Latency (L)

Initiation
interval/gap (I)

cycles

C = L + I ⋅ N

#cycles to completion

Latency is constant in the input

Inverse throughput

1 cycle per element,
regardless of pipeline depth!

F = p · C/f

#operations in the pipeline

Or: inverse throughput

spcl.inf.ethz.ch

@spcl_eth

11

No matter how deep the pipeline is

a new result is produced every cycle

I, L0

I, L1

I, L2

I, L3 I, L4

C = I N + L0 + L1 + L3 for N ≫ L

Three goals as performance engineers1:

 Fully pipeline compute (i.e., I = 1)

 Maximize useful computations p

 Saturate the pipeline

[1] de Fine Licht et al., "Transformations of High-Level Synthesis Codes for High-Performance Computing." arXiv preprint arXiv:1805.08288 (2018).

≈ I N

spcl.inf.ethz.ch

@spcl_eth

12

End goal: peak!

Perform compute in every piece
of available logic – every cycle!!

spcl.inf.ethz.ch

@spcl_eth

13

Parallelizing hardware in HLS

Executein parallel

Execute in parallel

Execute as pipeline

n = 0

p = 0 p = 1

n = 1

p = 0 p = 1

n = 2

p = 0 p = 1

n = 3

p = 0 p = 1

C ≈ I M
Parallel loops are

removed from the
iteration space!

F = f N P Performance
corresponds to

parallel hardware

This is now the full
runtime of the algorith

spcl.inf.ethz.ch

@spcl_eth

14

Pipeline-enabling transformations

Scalability transformations

Other transformations

 Accumulation interleaving
 Cyclic buffering
 Pipeline colaescing
 ...

 Vectorization
 Replication
 Streaming dataflow
 Tiling

 Memory extraction
 Condition flattening
 Type demotion
 ...

Hardware optimization vs. software optimization?

Parallelizing hardware in HLS

[1] de Fine Licht et al., "Transformations of High-Level Synthesis Codes for High-Performance Computing." arXiv preprint arXiv:1805.08288 (2018).

We can implement massively parallel
specialized hardware with HLS1!

...but, like GPU-programming, we
must be architecture-aware.

spcl.inf.ethz.ch

@spcl_eth

15

Hardware scaling

[2D stencil]

[Matrix multiplication]

[N-body simulation]

From de Fine Licht et al., "Transformations of High-Level Synthesis Codes for High-Performance Computing." arXiv preprint arXiv:1805.08288 (2018).

For HLS, the base case is bad

Luckily, there are patterns

spcl.inf.ethz.ch

@spcl_eth

16

HLS for FPGAs...

spcl.inf.ethz.ch

@spcl_eth

17

...and beyond?

HLS++

Memory

+

c d ya b

+

x

a b c d

on

spcl.inf.ethz.ch

@spcl_eth

18

Thank you for your attention*!

*For more, see:

”Transformations of High-Level Synthesis Codes for High-Performance Computing”

[arXiv 1805.08288]

