
spcl.inf.ethz.ch

@spcl_eth

J. DE FINE LICHT, T. HOEFLER

FPGAs and Beyond:
Specialized Hardware Architectures for HPC with High-Level Synthesis

spcl.inf.ethz.ch

@spcl_eth

2

spcl.inf.ethz.ch

@spcl_eth

3

Load-store vs. Dataflow

Memory

Cache

RegistersControl

x = a + b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y = (a + b)·(c + d)

a b

+

x

a b c d

a+b c+d

y

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non-von Neumann”)

spcl.inf.ethz.ch

@spcl_eth

4

Specialized hardware

Memory

+

c d ya b

+

x

a b c d

spcl.inf.ethz.ch

@spcl_eth

5

The paradox of FPGA efficiency

Memory

+

c d ya b

+

x

a b c d
Memory

Cache

RegistersControl

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x

~100x

~0.05x?

Comes from the
granularity

spcl.inf.ethz.ch

@spcl_eth

6

Specialized hardware

Memory

+

c d ya b

+

x

a b c d

We must learn how to
program these

spcl.inf.ethz.ch

@spcl_eth

7

Traditionally: register transfer level

Input regInput reg

Output reg

Logic 1 cycle

always @(posedge clk)

if (start) begin

out <= in + 1;

end

int c = a + b;

spcl.inf.ethz.ch

@spcl_eth

Nakayama, T. Hardware arrangement for floating-point addition and subtraction, 1993, US Patent 5,197,023.

8

Single floating point operation
RegReg

Reg

LogicLogic

Transient
register

Transient
register

Logic

…
float c = a + b;

[1] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for the Masses. Queue 11, 2, Pages 40 (February 2013), 13 pages.

FPGA programming is hard1!

spcl.inf.ethz.ch

@spcl_eth

Memory

+

c d ya b

+

x

a b c d

9

High-level synthesis

float y = (a + b) * (c + d);

++

*

a b dc

y

compute

y

a b c d

Circuits

Operations

Pipelines

spcl.inf.ethz.ch

@spcl_eth

10

Pipeline performance

ops

Latency (L)

Initiation
interval/gap (I)

cycles

C = L + I ⋅ N

#cycles to completion

Latency is constant in the input

Inverse throughput

1 cycle per element,
regardless of pipeline depth!

F = p · C/f

#operations in the pipeline

Or: inverse throughput

spcl.inf.ethz.ch

@spcl_eth

11

No matter how deep the pipeline is

a new result is produced every cycle

I, L0

I, L1

I, L2

I, L3 I, L4

C = I N + L0 + L1 + L3 for N ≫ L

Three goals as performance engineers1:

 Fully pipeline compute (i.e., I = 1)

 Maximize useful computations p

 Saturate the pipeline

[1] de Fine Licht et al., "Transformations of High-Level Synthesis Codes for High-Performance Computing." arXiv preprint arXiv:1805.08288 (2018).

≈ I N

spcl.inf.ethz.ch

@spcl_eth

12

End goal: peak!

Perform compute in every piece
of available logic – every cycle!!

spcl.inf.ethz.ch

@spcl_eth

13

Parallelizing hardware in HLS

Executein parallel

Execute in parallel

Execute as pipeline

n = 0

p = 0 p = 1

n = 1

p = 0 p = 1

n = 2

p = 0 p = 1

n = 3

p = 0 p = 1

C ≈ I M
Parallel loops are

removed from the
iteration space!

F = f N P Performance
corresponds to

parallel hardware

This is now the full
runtime of the algorith

spcl.inf.ethz.ch

@spcl_eth

14

Pipeline-enabling transformations

Scalability transformations

Other transformations

 Accumulation interleaving
 Cyclic buffering
 Pipeline colaescing
 ...

 Vectorization
 Replication
 Streaming dataflow
 Tiling

 Memory extraction
 Condition flattening
 Type demotion
 ...

Hardware optimization vs. software optimization?

Parallelizing hardware in HLS

[1] de Fine Licht et al., "Transformations of High-Level Synthesis Codes for High-Performance Computing." arXiv preprint arXiv:1805.08288 (2018).

We can implement massively parallel
specialized hardware with HLS1!

...but, like GPU-programming, we
must be architecture-aware.

spcl.inf.ethz.ch

@spcl_eth

15

Hardware scaling

[2D stencil]

[Matrix multiplication]

[N-body simulation]

From de Fine Licht et al., "Transformations of High-Level Synthesis Codes for High-Performance Computing." arXiv preprint arXiv:1805.08288 (2018).

For HLS, the base case is bad 

Luckily, there are patterns 

spcl.inf.ethz.ch

@spcl_eth

16

HLS for FPGAs...

spcl.inf.ethz.ch

@spcl_eth

17

...and beyond?

HLS++

Memory

+

c d ya b

+

x

a b c d

on

spcl.inf.ethz.ch

@spcl_eth

18

Thank you for your attention*!

*For more, see:

”Transformations of High-Level Synthesis Codes for High-Performance Computing”

[arXiv 1805.08288]

