e

Se - TR T (S Ly L Linf.ethz.ch
ETH urich R T PR oy e DINFK

J. DE FINE LICHT, T. HOEFLER

FPGAs and Beyond.:

A '. h&. =0

s

spcl.inf.ethz.ch oo o
v oo IETHZUrich

7 L NVIDIA
10" ¢ Intel 48-Core ransistors
i | AMDO‘Tth?re | PrOtUtypf KE"pler GPU ? thousands)
| . s /

iif’“ﬂ
&

10° - Intel 2 T: j:f_ . 7 RParallel

ST e " |Performance | sy s e me
105 _ _______________ Ry 204 N -

_ —® X Sequentlal

4 [o2 = Performance

10 _ DEC Alpha .l = .:.‘ & o\ é%g

- 2izea| AT 1
1{}3 3 | Y AR TV ARLEE ™ ol * *ih Frequency i

MIPS R2K . - ;cx' e x » (MHz) :xmf.r:mmmﬁ:m:;;:':ﬂmmx:m“'W“'

2 T ical Pow
. : . yplca 0 er Moore's law has déed at the age of 51 after an extended lliness.

""" — . - o o ik B = Y 1965, intel co-founder Gordon Moore made an observatiol mhemmne«o{componens
. : : a S eged cults was doubling every 12 months or so. Mareaver, o= 11

2003, that the number of transistors per chip that resulted in helmsp e per
nsistor was doubling every 12 months. in 1965, this meant that 50 transistors per chip affered
helmspef ansistor cost; Moore predicted that by 1970, this would rise to 1,000 components

per chip, and that the price per transistor would drop by 90 percent,

N b f with a It moce data and some simplfication, this observation became "Moore's law? the
u I I I e r 0 number of transistors per chip would double every 12 months.

Gordon Moore's observation was not driven by ai /P«! ia r sclentific or engineering necessity. oore’s original
It was a reflection on just how things happened to it. The silicon chip industry took note

and started using it not merely as 3 pvem tive ,bu asap ptive,
positive law: a target that the entire iIndustry should hit.

heterog neous

1975 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

homogeneous

]] = A

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Load-store vs. Dataflow

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Instruction Energy Breakdown

25p) 6pJ Control 70 pJ
I-Cache Access Register File Add

Access Source: Mark Horowitz, ISSC’'14

Static Dataflow (“non-von Neumann”)

Energy per operation: 1-3pJ

SR ‘ s v esien ETHziirich

Specialized hardware

AL B 5w ETHZzirich

The paradox of FPGA efficiency

Control Registers
~100x

Comes from the
granularity

\Y4

f?

IASPEL i) e Eyyy s iirich

Specialized hardware

We must learn how to
program these

SR ‘ s v esien ETHziirich

Traditionally: register transfer level

Input reg Input reg

always ((posedge clk)
if (start) begin
out <= in + 1; 1cyC|e

end

Output reg

int c=a + b;

spcl.inf.ethz.ch

L 4 @spcl_eth

ETH:zurich

Single floating point operation

Logic

Transient

FPGA programming is hard*! s

Logic

Transient
register

float c=a + b;

[1] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for the Masses. Queue 11, 2, Pages 40 (February 2013), 13 pages.

v owien ETHzUrich
High-level synthesis

5

Pipelines

{float y=(@a+Db)”*(c+d); }

AL R S FA AL v enien ETHZziirich

Pipeline performance

[Inverse throughput

[#cycles to completion W \

L #operations in the pipeline

N \
-

~

\/
F=p-C/f
/

1 cycle per element, }

g hrough . . , regardless of pipeline depth!
[Or:nverse t muf f‘gténcy is constant in the input] 8 PP P

SR ‘ e v esien ETHziirich

No matter how deep the pipeline is
a new result is produced every cycle

-

Three goals as performance engineers?:
= Fully pipeline compute (i.e., /=1)

= Maximize useful computations p

= Saturate the pipeline

MSIPIEL G T A S v v onien [ETHZzlirich

End goal: peak!

Perform compute in every piece
of available logic — every cycle!!

a7 o) = & e s v esien ETHziirich

Parallelizing hardware in HLS

C[n’p] — C[n’p] + A[Tl, m]) B[m’p]

This is now the full
runtime of the algorith

Parallel loops are

removed from the C~IM F=fNP Performance
iteration space! corresponds to
parallel hardware

a7 o) = B e e s ETHziirich

Parallelizing hardware in HLS

We can implement massively parallel
specialized hardware with HLS?!

...but, like GPU-programming, we
must be architecture-aware.

|MPEL RN o ek spcl.inf.ethz.ch E'qurlch

L 4 @spcl_eth

Hardware Scallng For HLS, the base case is bad ® }

Perf. Speedup
[GOp/s] elative Cumulative
Naive 0.02 1X -
Buffered [§2.5] 0.8 40X — .
Vectorized [§3.1, §4.2, §4.3, §4.4] 6.4 8X 320X [ZD StenC| I]
Replicated [§3.2, §3.3, §3.4] 227.8 36X 11,400
Perf. Speedup
[GOp/s] Relative Cumulative
Naive 0.01 1X -
Fused [§2.1, §2.6, §2.7, §4.2] 0.4 40 _ [Matrix multlpllcatlon]
Vectorized [§3.1] 3.2 8X 320X
Replicated [§3.2, §3.3, §3.4] 184.1 58X 18,410%
[Luckily, there are patterns © } Perf. Speedup

[GOp/s] Relative Cumulative
Initial [§4.2, §4.3] J 0.9 1X —
]

Interleaved [§2.2.1] 6.0 7X — [N-bOdy SimUIation]
Replicated [§3.2, §3.3 231.9 39X 258X

spcl.inf.ethz.ch

]] = A

HLS for FPGA:s...
FOOEED f N
= E
B i Swatxto
g@@:@:g Rt |
SRR

for_parallel n < 1to N do
for_pipelined m < 1to M do

for_parallel p < 1 to P do
| Cln,p] < C[n,p] + Aln,m] - B[m, p]

L 4 @spcl_eth

ETH:zurich

AL R S FA AL v enien ETHZziirich

...and beyond?

T
SOon00

T
ﬁi_ on

E u Memory n

a7 o) = & e s v esien ETHziirich

Thank you for your attention*!

*For more, see:
"Transformations of High-Level Synthesis Codes for High-Performance Computing”
[arXiv 1805.08288]

L " Emzirich

Systems @ ETH ziricn

