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Parsing the Title
“Scheduling”

² Scheduling is a vital part of any successful effort of coordinating and 
managing parallelism in high performance computers*
² Remains a challenge, at several levels, for Exscale computing**
² For compute-intensive applications with irregular (nested) parallelism 

² Multiple types, levels, and forms of parallelism
² Focus of the SNSF project Multilevel Scheduling in Large Scale High 

Performance Computers (2017-2020), p3.snf.ch/project-169123
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* ETP4HPC SRA2: 5.2 System software (kernel and run-time), 5.3 Prog. env., 5.7 Math. and algo. for extreme scale HPC systems
** IESP 2.0: Runtimes, compilers, applications, algorithms, performance optimization



… To Multiple Types, Levels, and Forms of Parallelism 
in Parallel Computing
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Multiscale modeling Hardware parallelism

Electronic Scale
Space: 2-10 Å3

Time: 0-1 fs

Atomistic Scale
Space: 1-300 nm3

Time: 0-1 ps

Microscopic Scale
Space: 0.1-15 µm3

Time: ns

Mesoscopic Scale
Space: 0.1-10.1 mm3

Time: ms

Macroscopic Scale
Space: 1 mm3- 1 km3

Time: s-h

Vector Scale
Parallelism: 2-4 → 16-256 data 
items/vector (accelerator core)
16→1,024 data items/vector      
(CPU core)
Time: vector length × 1 ns

Node Scale
Parallelism: 2-4 → 8-16 sockets

Time: 109 instructions × 1 ns

Global Grid Scale
Parallelism: 100x → 1,000x sites
Time: s-h
Local Grid or HPC Site Scale

Parallelism: 2*104→105-106 nodes
Time: ms-h

Pipeline Scale
Parallelism: 
10 → less instructions (1-thread)       
30 →100 instructions (multithread)
Time: several ns

Instruction Scale
Parallelism: 3-5 → less instructions
Time: 1 ns

SISD Instruction (scalar) 
Scale

Parallelism: 1 SISD instruction

SIMD Instruction Scale
Parallelism: 1 SIMD instruction

Thread Scale
Parallelism: 
8-12→32-256 CPU threads 
5,000→10,000 GPU threads
40-60→100 Co-proc. threads

Process Scale
Parallelism: 
5,000 CPU threads
50,000 GPU threads

Job Scale
Parallelism: 

100-107 processes or

100-1010 threads

Core Scale
Parallelism: 1:8 scalar:vector ratio

Time: 103 instructions × 1 ns

Chip or Socket (MIMD) Scale
Parallelism: 
            8-12 → 32-256 CPU cores 
          5,000 → 10,000 GPU cores
         40-60 → 100 Co-proc. cores 
Time: 106 instructions × 1 ns

Local Batch Scale
Parallelism:

100-107 processes × number 
of jobs / time period 

Global Batch Scale
Parallelism: 
number of sites

Software parallelism

This talk



Increasing Hardware Parallelism

² Through increased node count, CPU core count (multi- and manycore), and 
accelerator core count

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 4

Piz Daint @ CSCS SUMMIT @ ORNL TSUBAME 3.0 @ TokyoTech

CPU cores/node 1×12 (Xeon XC50)
2×18 (Xeon XC40)

2×22 (Power9) 2×14 (Xeon)

GPU cores/node 1×3,584 (CUDA P100)
(XC50)

6×640 (Tensor V100)
6×5,120 (CUDA V100)

4×3,584 (CUDA P100)

Nodes 5,320 (XC50)
1,813 (XC40)

4,608 540

² Intel Xeon Phi x200 Knights Landing ≤ 72 CPU cores, 4 hardware threads/core



Parsing the Title
“OpenMP Loop Scheduling”
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⟡ Loops typically come to mind in the context of shared memory systems
⟡ Application and underlying system characteristics determine the best schedule

⟡ No “one-size-fits-all” loop scheduling technique can address all
⟡ Sources of load imbalance for
⟡ Types of scientific applications on 
⟡ Types of computing platforms

⟡ OpenMP: 20+ years industry standard for shared-memory parallel programming
⟡ Widely used to parallel program a broad variety of applications
⟡ Supported by a growing number of hardware and software vendors
⟡ Several benchmark suites for performance evaluation (SPEComp, NAS) 

⟡ Scheduling: performance critical aspect of loops and important part of most 
OpenMP programs 
⟡ Not overshadowed by the introduction of explicit tasks in OpenMP
⟡ Nor by the accelerated computing APIs

⟡ The impact of system-induced variability is often neglected in loop scheduling 
research, particularly by OpenMP schedules



Parsing the Title
“OpenMP Loop Scheduling Revisited”
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OpenMP standard schedule()
⟡ static,chunk: predetermined allocation order offset by thread ID
⟡ dynamic,1: pure self-scheduling SS [Lusk, Overbeek ‘83]
⟡ dynamic,chunk: chunk self-scheduling CSS [Kruskal, Weiss ‘85]
⟡ guided: guided self-scheduling GSS [Polychronopoulos, Kuck ‘87]
⟡ guided,chunk: GSS with minimum chunk size
⟡ auto: implementation determines schedule; no “chunk” support 

Shared-memory self-schedules not in standard
⟡ tss: trapezoid self-scheduling TSS [Tzen, Ni ‘93]
⟡ fac2: practical factoring FAC [Flynn Hummel et al. ’90-92]
⟡ wf2: practical weighted factoring WF [Flynn Hummel et al. ’96]
⟡ rand: random self-scheduling RAND
⟡ taper: tapering strategy
⟡ bold: bold strategy

Are these schedules 
good enough to 

efficiently exploit HW 
parallelism in 2018+?

Are these schedules 
sufficient for all apps 

and systems?
Are there any 

other schedules 
not yet in 
OpenMP?

YES



Parsing the Title
“Loop Scheduling Revisited”
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load imbalance**
load imbalance***

induced by problem and algorithm
induced by problem, algorithm, and system

½ one goal vs. 
½ another goal

explicit trade-off between           
two optimization goals

Scheduling
Work

Queue
Data

Optimization Goal

Partitioning Assignment
Load Balancing

Explicit Implicit
Ordering Timing

Fully static
(pre-scheduling)

compilation compilation compilation compilation central
central | 
distributed

½ locality
½ scheduling overhead

load 
imbalance**

Work sharing
(static allocation)

compilation | 
execution

compilation compilation execution central
central | 
replicated |
distributed

½ locality
½ scheduling overhead

load 
imbalance**

Affinity & 
Work stealing

compilation | 
execution

execution compilation execution distributed
central | 
distributed

½ locality
½ load imbalance**

scheduling 
overhead

Fully dynamic
(self-scheduling) execution execution

[compilation]
execution execution central

central | 
replicated |
distributed

½ scheduling overhead
½ load imbalance***

locality



Static Scheduling and Work Sharing
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Block

Cyclic

Block-D

Cyclic-D

2002

2018+

Cyclic
Iteration 𝑖 is assigned 
to processor 𝑖	𝑚𝑜𝑑	𝑃.

Produces more 
balanced schedules 

than block scheduling 
for some non-

uniformly distributed 
parallel loops

Block

N iterations are divided 
into 𝑁/𝑃 blocks

Suitable for uniformly 
distributed loop 

iterations.

Block-D

Loop is scheduled and 
data are partitioned to 

increase locality.
If loop scheduling is 
blocked and matches 

data partitioning = 
Block-D.

Cyclic-D

Loop is scheduled and 
data are partitioned to 

increase locality.
If both loop scheduling 

occurs in a cyclic 
fashion and matches 

the data partitioning = 
Cyclic-D

Static 
Workload Balance 

(Tabirca et al.) 
Based on workload 

balancing. 
Workload is equally 

distributed onto all the 
processors. 

Proposes an equation 
for the upper bounds of 

the workload balance 
scheduling.

Others?

Polyhedral
Compilation

polyhedral.info
automatic parallelization, 

data locality optimizations, 
memory management optimizations, 

program verification, 
communication optimizations, 

SIMDization, 
code generation for hardware 

accelerators, high-level synthesis



CAFS
(Wang et al.)

Affinity Scheduling and Work Stealing
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1992

1994

1997
1999

2003 2011
AFS

(Subramanian, Eager)

Self-Adjusting Scheduling

AFS
(Markatos,

LeBlanc)
Affinity Scheduling

1993

2014

1995 1998 2002
2006 2012

LDS 
(Li et al.)

Locality-based 
Dynamic Scheduling

LAFS
(Wang et al.)

SAS
(Hamidzadeh, Lilja)

Dynamic Partitioned Affinity Scheduling
Wrapped Partitioned Affinity Scheduling

Localized Affinity Scheduling

MAFS
(Wang, Chang)

Modified Affinity Scheduling

Clustered Affinity Scheduling

EA, LA, CA, GA, HA
(Yan et al.)

Adaptive affinity algorithms 
with

exponential adaptive
linearly adaptive

conservatively adaptive
greedily adaptive 

heuristic adaptive
mechanisms

Exploit dynamic information

2015

User-Defined 
Schedules

(Kale)

Static and dynamic 
(work stealing) 

scheduling

𝝁Sched, 
𝝂Sched, 
fullsite

(Kale et al.)

Lightweight 
Scheduling for 

Balancing 
the Tradeoff 

Between 
Load Balance and 

Locality

KASS
(Wang et al.)

Knowledge-based 
Adaptive Self-Scheduling

MD, AR, RP, NR
(Ahn)

MD: most-dividing
AR: all-redistribution

RP: random-polling 
NR: neighbor-redistribution 
Model using order statistics

HS
(Olivier et al.)

Hierarchical Scheduling
Two levels: process and thread

Feedback Scheduling, 
Feedback Guided Scheduling, 

Static, 
Dynamic, 

Affinity Scheduling, 
Dynamic Affinity Scheduling

2D-FGS, 2D-FGLS, 
2D-STATIC, 2D-

DYN, 2D-AFS, 2D-
DAFS
(Price)

Discrete FGDLS
(Tabirca et al.)

O(log p)

Discrete FGDLS
(Tabirca et al.)

O(p + log p)

Work Dealing
(Hendler, Shavit)

Low-overhead alternative to 
Work Stealing

Continuous FGDLS
(Tabirca et al.)

O(log p)

Work stealing
(Blumofe, Leiserson)

For fully strict (well-behaved) 
multithreaded computations

Feedback-guided 
dynamic loop scheduling: 

Feedback guided 
block scheduling
Feedback guided 

affinity scheduling

FGDLS:
FGBS, FGAFS

(Bull)

-2013+

Centralized:
RandCentLB

MetisLB
ScotchLB
GreedyLB

GreedyRefineLB
GreedyCommLB

TopoCentLB
RefineLB

RefineSwapLB
RefineCommLB

RefineTopoLB
BlockLB
RotateLB

ComboCentLB
Distributed: 
NeighborLB

WSLB
DistributedLB
Hierarchical:

HybridLB
Seed:

random, neighbor
spray, workstealing

Charm++ LB
(Kale et al.)



Safe-self scheduling
assigns to each 

processor the largest 
number of consecutive 

iterations having a 
cumulative execution 

time just exceeding 
the average processor 

workload
Mix of STATIC + 

FAC

SSS
(Saletore, Lewis)
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Dynamic Loop Self-Scheduling 
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1966

1983

1986

1989

1991

1993

SS
(Lusk, Overbeek)

Self-scheduling
Among the first dynamic 

parallel-loop scheduling as 
optimized implementation 

of List scheduling

List 
scheduling

(Graham)

Optimal online 
scheduling 

for tasks 
with unknown 

processing times

GSS-MP
(Rudolph, 

Polychronopoulos)

Guided 
self-scheduling 

in message passing
systems

TSS
(Tzen, Ni)

Trapezoid 
self-scheduling

1981

1995
FRAC

(Banicescu, Hummel)
Factoring + Tiling (using SFC)

N-body: PFMA
Data locality and load balancing

19961985 1987
1990

1992 1994

SS
(Smith)

Self-scheduling
Among the first 

dynamic parallel-loop 
scheduling as optimized 

implementation 
of List Scheduling

CSS, FSC,
ECSS

(Kruskal, Weiss)

Fixed-size chunking 
with/without optimal 

chunk size.
Found as 

“static,chunk” in 
OpenMP.

Enhanced CSS 
assigns dependent 

iterations to the same 
processor

GSS
(Polychronopoulos, 

Kuck)
Guided self-

scheduling
Dynamically adjusts 

(decreases) the 
number of iterations 

self-scheduled to 
each processor

Pre-FAC
(Flynn, 

Flynn Hummel)

Scheduling 
Variable-Length 

Parallel Subtasks
Mathematical 
basis of FAC

AGSS
(Eager, Zahorjan)

Adaptive guided 
self-scheduling

SS
(Tang, Yew)

FAC
(Flynn Hummel et al.,

1991, 1992) 
Factoring

Probabilistic modeling of 
task processing times and 

allocation delay as i.i.d.r.v., 
using Pth order statistics.

1997
FISS, VISS

(Philip, Das.)

Fixed increase SS
Variable increase SS 1999

2001

2008

1998
2007

BAL
(Bast)

Challenges the 
assumption of 

i.i.d.r.v. task 
processing times

Proposes variance 
estimator and 

upper and lower 
bounds for task 

processing times

PEMPIs VRP
(Laine,  

Midorikawa)
Performance 

prediction based 
on VRP: 

Vector of Relative 
Performances

DTSS
(Xu, 

Chronopoulos)

Distributed TSS
Extends 

self-scheduling 
schemes to 

heterogeneous 
distributed systems

AWF-variants
(Cariño et al.) 

Use the ratios based on 
timings from earlier 

chunks to compute the 
processor weights for the 

succeeding chunks
AWF-B (batched AWF)

AWF-C (chunked AWF)
AWF-D (coarser 

than AWF-B)
AWF-E (coarser 

than AWF-C)

Self-scheduling
Among the first 

dynamic parallel-
loop scheduling as 

optimized 
implementation 

of List Scheduling

MIGSS
(Wang, Wang)

Multilevel interleaved 
guided self-scheduling

TAPER
(Lucco)

Tapering strategy

MSS
(Jung et al.)

Multithreaded self-scheduling
Distributed memory systems

Multithreads the iterations of a 
chunk execution into threads

LLPC
(Yue, Lilja)

Loop-level 
process control

Uses current system 
load to determine the 

upper limit on the 
number of processes 

the application can 
create for that parallel 

section

WF
(Hummel et al.)
Weighted Factoring
Weights chunks with 

processor speeds 

BOLD
(Hagerup)

Adapts chunk size at 
runtime based on chunk 

execution time

GDCS
(Lee et al.)

Global Distributed 
Control Scheduling

Decentralize the 
scheduling

TS
(Kim, Purtilo)

Tree Scheduling
Decentralized, 

employs migration

AHS
(Fann et al.)

Adaptive hybrid 
scheduling

Employs static and 
dynamic scheduling

based on manually 
chosen probabilities to 

fetch / not fetch 
iterations

AF
(Banicescu,

Liu)
Adaptive 

Factoring
Decentralize the 

scheduling

TFSS
(Chronopoulos et al.)

Trapezoid-factoring 
self-scheduling

AWF
(Banicescu et al.)

Adaptive weighted 
factoring

Adapts processor 
weights

after a time-step

MemBankDLS
(Kandemir et al.)

Compare against SS and 
Tapering

Implem. in compiler
Target embedded sys.



2003

Runtime 
Empirical 
Selection

(Zhang, Voss)

Extends Adaptive 
OpenMP

Uses NASomp, SPEComp

Static, dynamic, guided, 
AFS, TSS, do not react to 

OpenMP applications 
executing on SMP systems 

with SMT nodes
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Loop Scheduling in Compilers and Runtime Systems
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1987

1989

1996

2000

2004
Implements

AGSS
(Eager, Zahorjan)

Adaptive 
Guided Self-Scheduling

Proposed a wrapped 
assignment of iterations to 

rectify a shortcoming of GSS

Implements
FSC

(Butler et al.)
Portable Programs

for 
Parallel Processors

IPLS
(Fann et al.)

Intelligent parallel loop 
scheduling:

Knowledge-based 
techniques to select 

appropriate loop-
scheduling algorithms 

according to loop 
behaviors and system 

states 

1988

2008
OpenMP Task 

Scheduling 
(Duran et al.)

Evaluation of OpenMP 
Task Scheduling Strategies

20101991 1998 2005

TUS
Implements FSC

(Thomas, 
Crowther)

The Uniform System:
An Approach to 

Runtime Support for 
Large Scale Shared 

Memory Parallel 
Processors

Implements 
FSC

KSR Presto 
runtime library

Fixed block SS
(Durand et al.)

Adaptive OpenMP
(Zhang et al.) 

Implement AFS, TSS
Compare against OpenMP’s

static, dynamic, guided 
HT and SMT architectures

Two level scheduling
Uses SPEComp

2011

2015

2017

2016

autopin
(Klug et al.)

Automated Optimization 
of Thread-to-Core Pinning 

on Multicore Systems
Uses HW performance 

counters to automatically 
detect and apply the best 
binding between threads 
and processor cores in a 
shared memory system

DLS+OpenMP
(Buder) 

Evaluation and Analysis 
of Dynamic Loop 

Scheduling in OpenMP
STATIC, SS, FSC, FAC, 

TAPER, TSS, WF, 
BOLD in LibGOMP

*Preliminary version of 
this talk

Impact of memory 
contention on dynamic 
scheduling on NUMA 

multiprocessors for 
fixed block SS 

(or CSS) and for 
decreasing block SS 
(i.e., factoring-based 

SS)

ForestGOMP
(Broquedis et al.)

An OpenMP RT extended by 
“An Efficient OpenMP Loop 

Scheduler for Irregular 
Applications on Large-Scale 

NUMA Machines” 
(Durand, et al., 2013)

Introduces 
Adaptive Loop Scheduling (ALS)

Employs work stealing 
First implementation of work 

stealing in OpenMP

Automatic OpenMP 
Loop Scheduling

(Thoman et al.)
A Combined Compiler and 

Runtime Approach
Fully automatic loop scheduling policy: 

adapts to both application characteristics 
and current system external load

Forwards static code analysis to a 
runtime system 

Employs Insieme compiler 
Compares  with LIBGOMP 4.5.3: 

static, guided, dynamic 
Test on 3 custom kernels 

and NAS kernels 

User-Defined Schedules
(Kale, Gropp)

OpenMP Interface to define own user 
schedules

Divide application into 
static + dynamic fractions 

for scheduling 
Employ work stealing 

Runtime 
supervisor (RP3)

(Hummel, 
Schonberg)

Central work queue
singly-linked list

Adaptive LB
(Ioannidis,

Dwarkadas)
TreadMarks and 

SUIF compiler

Hectiling
(Russ et al.)

Fractiling + Hector = 
Hectiling

Implements FRAC in 
the HECTOR runtime

DLS API vs. OpenMP
(Govindaswamy)

An API for Adaptive loop 
scheduling in shared 

address space architectures

PREMA
(Balasubramaniam)

Parallel Competitive 
Runtime Environment for 

Multicomputer Applications

Affinity Sched. in 
IBM OpenMP RT

(Ayguadé et al.)
Implements SAS, 

AFS, FGDLS into 
IBM’s OpenMP RT

JIT LB
(Cammarota et al.)

Proposes a new run-time technique
1.Profiles iteration space (use 

PAPI)
2.Partitions it into non-equal 

chunks with equal exec. times
3.Attempts to schedule them or 

finds the dynamic schedule most 
suitable for particular instance of 

loop and architecture
4.Targets irregular loops

Implementation in LIBGOMP of the 
new technique + FAC and TSS

Experiments with 4 to 8 threads

BinLPT
(Penna et al.) 

A Novel Workload-
Aware Loop Scheduler 

for Irregular Parallel 
Loops

Static allocation, dynamic 
execution

SRR
(Penna et al.)

Smart Round-Robin 
Assessing the 

Performance of the SRR 
Loop Scheduler with 
Irregular Workloads 

Workload-aware 
scheduling

Implementation in 
LIBGOMP

Static allocation, 
dynamic execution



Parsing the Title
“More Schedules”

² OpenMP has not yet adopted state of the art scheduling (beyond SS and GSS)
² Why more self-scheduling? 

² Risk of unexploited parallelism due to increased core counts
² Load imbalance: problem, application, system (e.g., OS preemption, migration; 

NUMA effects due to smaller caches / core)
² Central work queue 

² Facilitates a dynamic, even distribution of load among processors
² Ensures no processor remains idle while there is work to be done
² Scalability through hierarchies and distribution

² Self-scheduling places the scheduling responsibility on the runtime system 
rather than on the operating system or the programmer
² The runtime: optimized for a specific programming model and semantics 
² The operating system kernel primitives must be general enough to 

accommodate a variety of programming models and languages
² The programmer: not (always) a scheduling expert
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Parsing the Title
“Making the Case”

² One in-house linear algebra kernel
² Four molecular dynamics codes from various OpenMP benchmark suites
² Non-uniformly distributed loops ⇒ Problem and algorithmic variance
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Benchmark suite: 
code

#LOC #Parallel 
Loops

#Iterations
C.O.V.

Iterations 
Exec. Time

Execution time 
on 1 thread

OpenMP
Fraction

Not OpenMP
Fraction

Adjoint convolution 
decreasing task: 
ac

235 1 106 57 % 591.39 s 99.99 % 0.01 %

OpenMP SCR: 
c_md 384 4 16×103 57 % 865.31 s 100 % 0.00 %

RODINIA: 
lava.md 430 1 13×104 14 % 5168.60 s 99.98 % 0.02 %

SPEC OpenMP2012: 
350.md 3,701 10 27×103 8700 % 98.57 s 97.19 % 2.81 %
NAS OpenMP: 
MG Class C 1,466 13 101-103 0-1 % 55.70 s 89.04 % 10.96 %



Parsing the Title
“Making the Case”

² Newly added self-scheduling techniques
⟡ tss: trapezoid self-scheduling TSS [ ‘93]

⟡ Collapses to static,chunk when first 
and last chunk equal #iterations/#cores 

⟡ fac2: practical factoring FAC [’90-92]
⟡ Unknown mean and stdev of iteration        

execution times
⟡ wf2: practical weighted factoring WF [’96]

⟡ Unknown mean and stdev of iteration 
execution times

⟡ rand: random self-scheduling RAND
⟡ Random chunk ∈ [#iterations/100×#cores, 

#iterations/2×#cores], min ≥ 1, max ≥ min+1

² Usage via schedule(runtime)
² Implementation into open source OpenMP runtime                     

LaPeSD-libGOMP https://github.com/lapesd/libgomp 
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ST
AT

IC
G
SS

TS
S

FA
C2

W
F2

RA
N
D

SS TH
RE

AD
S

25 25 25 13 12 11 1 T0
25 19 22 13 10 2 1 T1
25 14 18 13 15 6 1 T2
25 11 14 13 14 9 1 T3

8 11 7 6 12 1
6 7 7 5 6 1
5 3 7 7 12 1
3 7 6 6 1
3 4 3 5 1
2 4 4 4 1
1 4 3 9 1

1 4 4 3 1

1 2 2 2 1

1 2 2 10 1

2 3 1

2 1
1 1
1 1
1 1

...
1

100 iterations, 4 threads



Parsing the Title
“Making the Case”

² miniHPC: Fully-controlled 22-node system used for research and teaching
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miniHPC node Characteristic

Sockets 2
Processor Intel Xeon CPU E5-2650 v4
Clock speed 2.40GHz
Architecture x86_64
L1D cache 32KB
L1I cache 32KB
L2 cache 256KB
L3 cache 25600KB
RAM 64GB
Physical CPU cores 20
HT CPU cores 40



Parsing the Title
“Making the Case”

²Executed five benchmarks with 
their OpenMP loops scheduled 
using 20 threads with 
² STATIC, SS, GSS
² TSS, FAC2, WF, RAND
² Originally: no schedule

²System-induced load imbalance
²Five pinning strategies

²Parallel execution time statistics 
(median and stdev) of 20 runs of 
each experiment

²Does a schedule benefit a 
parallel loop? 

²Can it handle HW heterogeneity?
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SOCKET	0 SOCKET	1
CORES C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

PIN1 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

PIN2 T0 T1 T2 T3 T4 T5 T6 T7 T8 × T9 T10 T11 T12 T13 T14 T15 T16 T17 ×
T18 T19

PIN3 T0 T1 T2 T3 T4 T5 T6 × × × T7 T8 T9 T10 T11 T12 × × × ×
T13 T14 T15 T16 T17 T18 T19

PIN4 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 × × × × × × × ×
T12 T13 T14 T15 T16

T17 T18

T19

PIN5 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 × × × × × × × × × ×
T10 T11 T12 T13 T14

T15 T16 T17

T18 T19

CORE	WEIGHTS 1 0.5 0.33 0.25



Parsing the Title
“Making the Case”
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ac

min

max

#Iterations
C.O.V.

Iterations 
Exec. Time

106 57 %



Parsing the Title
“Making the Case”
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c_md

min

max

#Iterations
C.O.V.

Iterations 
Exec. Time

16×103 57 %



Parsing the Title
“Making the Case”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 19

lava.md

min

max

#Iterations
C.O.V.

Iterations 
Exec. Time

13×104 14 %



Parsing the Title
“Making the Case”
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350.md

min

max

#Iterations
C.O.V.

Iterations 
Exec. Time

27×103 8700 %



Parsing the Title
“Making the Case”
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MG

min

max

#Iterations
(Class C)

C.O.V.
Iterations 

Exec. Time

2-103 0-1 %



To Use or Not to Use Dynamic Loop Self-Scheduling?
No “One-Size-Fits-All”, Wide Gap Between Best and Worst

⟡ Additional schedules provide benefit over existing schedules

⟡ When application and system parallelism is regular, STATIC is sufficient

⟡ When the #iterations is too small to generate enough work and when the 
#threads is large, then STATIC is sufficient

⟡ When the cost of allocating loop iterations to a thread is larger than the cost to 
execute the loop iterations then dynamic loop scheduling is not beneficial
⟡ Static and affinity-based methods can be used instead

⟡ In the other cases
⟡ High compute intensity
⟡ Nested and irregular parallelism
⟡ System-induced variabilities (e.g., OS, NUMA)
dynamic loop scheduling is needed and self-scheduling offers benefits over 
affinity- and work stealing-based methods
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So What?

Advantage
² The newly implemented DLS are immediately usable by existing programs 

using our non-standard prototype implementation via schedule(runtime)
² Numerous OpenMP production codes in active use
² Numerous multi/manycore platforms available
² https://bitbucket.org/PatrickABuder/libgomp/src

Usefulness 
² On heterogeneous platforms
² Multi/manycore CPUs
² Fat cores or faster connected cores self-schedule more frequently
² Thin cores or slower connected cores self-schedule more rarely

² Multi/manycore CPUs and accelerator cores
² schedule(runtime) for the CPU threads
² dist_schedule(static,chunk) with schedule(runtime[,chunk])

for target teams and their threads on accelerator cores
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Now What?

⟡ Advocate for the inclusion of more self-scheduling techniques into the 
OpenMP standard or as an interface for user-defined schedulers
⟡ To address all sources of load imbalance (problem, algorithmic, systemic) 

during execution
⟡ Runtime should exploit user expert knowledge about the application
⟡ Global OpenMP task scheduling still unaddressed

⟡ Implement further state-of-the-art loop self-scheduling techniques (with 
feedback loops) into LLVM/Clang

⟡ Extend the proof of concept beyond benchmarks into real applications
⟡ Combine with self-scheduling in MPI layer 
⟡ PASC project SPH-EXA, www.pasc-ch.org/projects/2017-2020/sph-exa/

⟡ Implement an intelligent selection mechanism among the many available 
options, based on previous work [Boulmier et al. 2017; Banicescu et al. 2013]
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Thank you for 
your attention!


