
OpenMP Loop Scheduling
Revisited: Making a Case for
More Schedules
Florina M. Ciorba1

hpc.dmi.unibas.ch

ADAC6 Workshop Zurich, 20.06.2018

Work conducted with Christian Iwainsky2 and Patrick Buder1, to appear at iWomp18
1 University of Basel, Switzerland
2 Technische Universität Darmstadt, Germany

Parsing the Title
“Scheduling”

² Scheduling is a vital part of any successful effort of coordinating and
managing parallelism in high performance computers*
² Remains a challenge, at several levels, for Exscale computing**
² For compute-intensive applications with irregular (nested) parallelism

² Multiple types, levels, and forms of parallelism
² Focus of the SNSF project Multilevel Scheduling in Large Scale High

Performance Computers (2017-2020), p3.snf.ch/project-169123

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 2

* ETP4HPC SRA2: 5.2 System software (kernel and run-time), 5.3 Prog. env., 5.7 Math. and algo. for extreme scale HPC systems
** IESP 2.0: Runtimes, compilers, applications, algorithms, performance optimization

… To Multiple Types, Levels, and Forms of Parallelism
in Parallel Computing

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 3

0

-1

+1

-2

-3

+3

0

-1

-2

+2

+1

+1

0

-2

-1
-3

+2

-4

-3
-5

Multiscale modeling Hardware parallelism

Electronic Scale
Space: 2-10 Å3

Time: 0-1 fs

Atomistic Scale
Space: 1-300 nm3

Time: 0-1 ps

Microscopic Scale
Space: 0.1-15 µm3

Time: ns

Mesoscopic Scale
Space: 0.1-10.1 mm3

Time: ms

Macroscopic Scale
Space: 1 mm3- 1 km3

Time: s-h

Vector Scale
Parallelism: 2-4 → 16-256 data
items/vector (accelerator core)
16→1,024 data items/vector
(CPU core)
Time: vector length × 1 ns

Node Scale
Parallelism: 2-4 → 8-16 sockets

Time: 109 instructions × 1 ns

Global Grid Scale
Parallelism: 100x → 1,000x sites
Time: s-h
Local Grid or HPC Site Scale

Parallelism: 2*104→105-106 nodes
Time: ms-h

Pipeline Scale
Parallelism:
10 → less instructions (1-thread)
30 →100 instructions (multithread)
Time: several ns

Instruction Scale
Parallelism: 3-5 → less instructions
Time: 1 ns

SISD Instruction (scalar)
Scale

Parallelism: 1 SISD instruction

SIMD Instruction Scale
Parallelism: 1 SIMD instruction

Thread Scale
Parallelism:
8-12→32-256 CPU threads
5,000→10,000 GPU threads
40-60→100 Co-proc. threads

Process Scale
Parallelism:
5,000 CPU threads
50,000 GPU threads

Job Scale
Parallelism:

100-107 processes or

100-1010 threads

Core Scale
Parallelism: 1:8 scalar:vector ratio

Time: 103 instructions × 1 ns

Chip or Socket (MIMD) Scale
Parallelism:
 8-12 → 32-256 CPU cores
 5,000 → 10,000 GPU cores
 40-60 → 100 Co-proc. cores
Time: 106 instructions × 1 ns

Local Batch Scale
Parallelism:

100-107 processes × number
of jobs / time period

Global Batch Scale
Parallelism:
number of sites

Software parallelism

This talk

Increasing Hardware Parallelism

² Through increased node count, CPU core count (multi- and manycore), and
accelerator core count

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 4

Piz Daint @ CSCS SUMMIT @ ORNL TSUBAME 3.0 @ TokyoTech

CPU cores/node 1×12 (Xeon XC50)
2×18 (Xeon XC40)

2×22 (Power9) 2×14 (Xeon)

GPU cores/node 1×3,584 (CUDA P100)
(XC50)

6×640 (Tensor V100)
6×5,120 (CUDA V100)

4×3,584 (CUDA P100)

Nodes 5,320 (XC50)
1,813 (XC40)

4,608 540

² Intel Xeon Phi x200 Knights Landing ≤ 72 CPU cores, 4 hardware threads/core

Parsing the Title
“OpenMP Loop Scheduling”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 5

⟡ Loops typically come to mind in the context of shared memory systems
⟡ Application and underlying system characteristics determine the best schedule

⟡ No “one-size-fits-all” loop scheduling technique can address all
⟡ Sources of load imbalance for
⟡ Types of scientific applications on
⟡ Types of computing platforms

⟡ OpenMP: 20+ years industry standard for shared-memory parallel programming
⟡ Widely used to parallel program a broad variety of applications
⟡ Supported by a growing number of hardware and software vendors
⟡ Several benchmark suites for performance evaluation (SPEComp, NAS)

⟡ Scheduling: performance critical aspect of loops and important part of most
OpenMP programs
⟡ Not overshadowed by the introduction of explicit tasks in OpenMP
⟡ Nor by the accelerated computing APIs

⟡ The impact of system-induced variability is often neglected in loop scheduling
research, particularly by OpenMP schedules

Parsing the Title
“OpenMP Loop Scheduling Revisited”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 6

OpenMP standard schedule()
⟡ static,chunk: predetermined allocation order offset by thread ID
⟡ dynamic,1: pure self-scheduling SS [Lusk, Overbeek ‘83]
⟡ dynamic,chunk: chunk self-scheduling CSS [Kruskal, Weiss ‘85]
⟡ guided: guided self-scheduling GSS [Polychronopoulos, Kuck ‘87]
⟡ guided,chunk: GSS with minimum chunk size
⟡ auto: implementation determines schedule; no “chunk” support

Shared-memory self-schedules not in standard
⟡ tss: trapezoid self-scheduling TSS [Tzen, Ni ‘93]
⟡ fac2: practical factoring FAC [Flynn Hummel et al. ’90-92]
⟡ wf2: practical weighted factoring WF [Flynn Hummel et al. ’96]
⟡ rand: random self-scheduling RAND
⟡ taper: tapering strategy
⟡ bold: bold strategy

Are these schedules
good enough to

efficiently exploit HW
parallelism in 2018+?

Are these schedules
sufficient for all apps

and systems?
Are there any

other schedules
not yet in
OpenMP?

YES

Parsing the Title
“Loop Scheduling Revisited”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 7

load imbalance**
load imbalance***

induced by problem and algorithm
induced by problem, algorithm, and system

½ one goal vs.
½ another goal

explicit trade-off between
two optimization goals

Scheduling
Work

Queue
Data

Optimization Goal

Partitioning Assignment
Load Balancing

Explicit Implicit
Ordering Timing

Fully static
(pre-scheduling)

compilation compilation compilation compilation central
central |
distributed

½ locality
½ scheduling overhead

load
imbalance**

Work sharing
(static allocation)

compilation |
execution

compilation compilation execution central
central |
replicated |
distributed

½ locality
½ scheduling overhead

load
imbalance**

Affinity &
Work stealing

compilation |
execution

execution compilation execution distributed
central |
distributed

½ locality
½ load imbalance**

scheduling
overhead

Fully dynamic
(self-scheduling) execution execution

[compilation]
execution execution central

central |
replicated |
distributed

½ scheduling overhead
½ load imbalance***

locality

Static Scheduling and Work Sharing

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 8

Block

Cyclic

Block-D

Cyclic-D

2002

2018+

Cyclic
Iteration 𝑖 is assigned
to processor 𝑖	𝑚𝑜𝑑	𝑃.

Produces more
balanced schedules

than block scheduling
for some non-

uniformly distributed
parallel loops

Block

N iterations are divided
into 𝑁/𝑃 blocks

Suitable for uniformly
distributed loop

iterations.

Block-D

Loop is scheduled and
data are partitioned to

increase locality.
If loop scheduling is
blocked and matches

data partitioning =
Block-D.

Cyclic-D

Loop is scheduled and
data are partitioned to

increase locality.
If both loop scheduling

occurs in a cyclic
fashion and matches

the data partitioning =
Cyclic-D

Static
Workload Balance

(Tabirca et al.)
Based on workload

balancing.
Workload is equally

distributed onto all the
processors.

Proposes an equation
for the upper bounds of

the workload balance
scheduling.

Others?

Polyhedral
Compilation

polyhedral.info
automatic parallelization,

data locality optimizations,
memory management optimizations,

program verification,
communication optimizations,

SIMDization,
code generation for hardware

accelerators, high-level synthesis

CAFS
(Wang et al.)

Affinity Scheduling and Work Stealing

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 9

1992

1994

1997
1999

2003 2011
AFS

(Subramanian, Eager)

Self-Adjusting Scheduling

AFS
(Markatos,

LeBlanc)
Affinity Scheduling

1993

2014

1995 1998 2002
2006 2012

LDS
(Li et al.)

Locality-based
Dynamic Scheduling

LAFS
(Wang et al.)

SAS
(Hamidzadeh, Lilja)

Dynamic Partitioned Affinity Scheduling
Wrapped Partitioned Affinity Scheduling

Localized Affinity Scheduling

MAFS
(Wang, Chang)

Modified Affinity Scheduling

Clustered Affinity Scheduling

EA, LA, CA, GA, HA
(Yan et al.)

Adaptive affinity algorithms
with

exponential adaptive
linearly adaptive

conservatively adaptive
greedily adaptive

heuristic adaptive
mechanisms

Exploit dynamic information

2015

User-Defined
Schedules

(Kale)

Static and dynamic
(work stealing)

scheduling

𝝁Sched,
𝝂Sched,
fullsite

(Kale et al.)

Lightweight
Scheduling for

Balancing
the Tradeoff

Between
Load Balance and

Locality

KASS
(Wang et al.)

Knowledge-based
Adaptive Self-Scheduling

MD, AR, RP, NR
(Ahn)

MD: most-dividing
AR: all-redistribution

RP: random-polling
NR: neighbor-redistribution
Model using order statistics

HS
(Olivier et al.)

Hierarchical Scheduling
Two levels: process and thread

Feedback Scheduling,
Feedback Guided Scheduling,

Static,
Dynamic,

Affinity Scheduling,
Dynamic Affinity Scheduling

2D-FGS, 2D-FGLS,
2D-STATIC, 2D-

DYN, 2D-AFS, 2D-
DAFS
(Price)

Discrete FGDLS
(Tabirca et al.)

O(log p)

Discrete FGDLS
(Tabirca et al.)

O(p + log p)

Work Dealing
(Hendler, Shavit)

Low-overhead alternative to
Work Stealing

Continuous FGDLS
(Tabirca et al.)

O(log p)

Work stealing
(Blumofe, Leiserson)

For fully strict (well-behaved)
multithreaded computations

Feedback-guided
dynamic loop scheduling:

Feedback guided
block scheduling
Feedback guided

affinity scheduling

FGDLS:
FGBS, FGAFS

(Bull)

-2013+

Centralized:
RandCentLB

MetisLB
ScotchLB
GreedyLB

GreedyRefineLB
GreedyCommLB

TopoCentLB
RefineLB

RefineSwapLB
RefineCommLB

RefineTopoLB
BlockLB
RotateLB

ComboCentLB
Distributed:
NeighborLB

WSLB
DistributedLB
Hierarchical:

HybridLB
Seed:

random, neighbor
spray, workstealing

Charm++ LB
(Kale et al.)

Safe-self scheduling
assigns to each

processor the largest
number of consecutive

iterations having a
cumulative execution

time just exceeding
the average processor

workload
Mix of STATIC +

FAC

SSS
(Saletore, Lewis)

ADAC6 | Zurich | June 20, 20182000

Dynamic Loop Self-Scheduling

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules 10

1966

1983

1986

1989

1991

1993

SS
(Lusk, Overbeek)

Self-scheduling
Among the first dynamic

parallel-loop scheduling as
optimized implementation

of List scheduling

List
scheduling

(Graham)

Optimal online
scheduling

for tasks
with unknown

processing times

GSS-MP
(Rudolph,

Polychronopoulos)

Guided
self-scheduling

in message passing
systems

TSS
(Tzen, Ni)

Trapezoid
self-scheduling

1981

1995
FRAC

(Banicescu, Hummel)
Factoring + Tiling (using SFC)

N-body: PFMA
Data locality and load balancing

19961985 1987
1990

1992 1994

SS
(Smith)

Self-scheduling
Among the first

dynamic parallel-loop
scheduling as optimized

implementation
of List Scheduling

CSS, FSC,
ECSS

(Kruskal, Weiss)

Fixed-size chunking
with/without optimal

chunk size.
Found as

“static,chunk” in
OpenMP.

Enhanced CSS
assigns dependent

iterations to the same
processor

GSS
(Polychronopoulos,

Kuck)
Guided self-

scheduling
Dynamically adjusts

(decreases) the
number of iterations

self-scheduled to
each processor

Pre-FAC
(Flynn,

Flynn Hummel)

Scheduling
Variable-Length

Parallel Subtasks
Mathematical
basis of FAC

AGSS
(Eager, Zahorjan)

Adaptive guided
self-scheduling

SS
(Tang, Yew)

FAC
(Flynn Hummel et al.,

1991, 1992)
Factoring

Probabilistic modeling of
task processing times and

allocation delay as i.i.d.r.v.,
using Pth order statistics.

1997
FISS, VISS

(Philip, Das.)

Fixed increase SS
Variable increase SS 1999

2001

2008

1998
2007

BAL
(Bast)

Challenges the
assumption of

i.i.d.r.v. task
processing times

Proposes variance
estimator and

upper and lower
bounds for task

processing times

PEMPIs VRP
(Laine,

Midorikawa)
Performance

prediction based
on VRP:

Vector of Relative
Performances

DTSS
(Xu,

Chronopoulos)

Distributed TSS
Extends

self-scheduling
schemes to

heterogeneous
distributed systems

AWF-variants
(Cariño et al.)

Use the ratios based on
timings from earlier

chunks to compute the
processor weights for the

succeeding chunks
AWF-B (batched AWF)

AWF-C (chunked AWF)
AWF-D (coarser

than AWF-B)
AWF-E (coarser

than AWF-C)

Self-scheduling
Among the first

dynamic parallel-
loop scheduling as

optimized
implementation

of List Scheduling

MIGSS
(Wang, Wang)

Multilevel interleaved
guided self-scheduling

TAPER
(Lucco)

Tapering strategy

MSS
(Jung et al.)

Multithreaded self-scheduling
Distributed memory systems

Multithreads the iterations of a
chunk execution into threads

LLPC
(Yue, Lilja)

Loop-level
process control

Uses current system
load to determine the

upper limit on the
number of processes

the application can
create for that parallel

section

WF
(Hummel et al.)
Weighted Factoring
Weights chunks with

processor speeds

BOLD
(Hagerup)

Adapts chunk size at
runtime based on chunk

execution time

GDCS
(Lee et al.)

Global Distributed
Control Scheduling

Decentralize the
scheduling

TS
(Kim, Purtilo)

Tree Scheduling
Decentralized,

employs migration

AHS
(Fann et al.)

Adaptive hybrid
scheduling

Employs static and
dynamic scheduling

based on manually
chosen probabilities to

fetch / not fetch
iterations

AF
(Banicescu,

Liu)
Adaptive

Factoring
Decentralize the

scheduling

TFSS
(Chronopoulos et al.)

Trapezoid-factoring
self-scheduling

AWF
(Banicescu et al.)

Adaptive weighted
factoring

Adapts processor
weights

after a time-step

MemBankDLS
(Kandemir et al.)

Compare against SS and
Tapering

Implem. in compiler
Target embedded sys.

2003

Runtime
Empirical
Selection

(Zhang, Voss)

Extends Adaptive
OpenMP

Uses NASomp, SPEComp

Static, dynamic, guided,
AFS, TSS, do not react to

OpenMP applications
executing on SMP systems

with SMT nodes

ADAC6 | Zurich | June 20, 20182012

Loop Scheduling in Compilers and Runtime Systems

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules 11

1987

1989

1996

2000

2004
Implements

AGSS
(Eager, Zahorjan)

Adaptive
Guided Self-Scheduling

Proposed a wrapped
assignment of iterations to

rectify a shortcoming of GSS

Implements
FSC

(Butler et al.)
Portable Programs

for
Parallel Processors

IPLS
(Fann et al.)

Intelligent parallel loop
scheduling:

Knowledge-based
techniques to select

appropriate loop-
scheduling algorithms

according to loop
behaviors and system

states

1988

2008
OpenMP Task

Scheduling
(Duran et al.)

Evaluation of OpenMP
Task Scheduling Strategies

20101991 1998 2005

TUS
Implements FSC

(Thomas,
Crowther)

The Uniform System:
An Approach to

Runtime Support for
Large Scale Shared

Memory Parallel
Processors

Implements
FSC

KSR Presto
runtime library

Fixed block SS
(Durand et al.)

Adaptive OpenMP
(Zhang et al.)

Implement AFS, TSS
Compare against OpenMP’s

static, dynamic, guided
HT and SMT architectures

Two level scheduling
Uses SPEComp

2011

2015

2017

2016

autopin
(Klug et al.)

Automated Optimization
of Thread-to-Core Pinning

on Multicore Systems
Uses HW performance

counters to automatically
detect and apply the best
binding between threads
and processor cores in a
shared memory system

DLS+OpenMP
(Buder)

Evaluation and Analysis
of Dynamic Loop

Scheduling in OpenMP
STATIC, SS, FSC, FAC,

TAPER, TSS, WF,
BOLD in LibGOMP

*Preliminary version of
this talk

Impact of memory
contention on dynamic
scheduling on NUMA

multiprocessors for
fixed block SS

(or CSS) and for
decreasing block SS
(i.e., factoring-based

SS)

ForestGOMP
(Broquedis et al.)

An OpenMP RT extended by
“An Efficient OpenMP Loop

Scheduler for Irregular
Applications on Large-Scale

NUMA Machines”
(Durand, et al., 2013)

Introduces
Adaptive Loop Scheduling (ALS)

Employs work stealing
First implementation of work

stealing in OpenMP

Automatic OpenMP
Loop Scheduling

(Thoman et al.)
A Combined Compiler and

Runtime Approach
Fully automatic loop scheduling policy:

adapts to both application characteristics
and current system external load

Forwards static code analysis to a
runtime system

Employs Insieme compiler
Compares with LIBGOMP 4.5.3:

static, guided, dynamic
Test on 3 custom kernels

and NAS kernels

User-Defined Schedules
(Kale, Gropp)

OpenMP Interface to define own user
schedules

Divide application into
static + dynamic fractions

for scheduling
Employ work stealing

Runtime
supervisor (RP3)

(Hummel,
Schonberg)

Central work queue
singly-linked list

Adaptive LB
(Ioannidis,

Dwarkadas)
TreadMarks and

SUIF compiler

Hectiling
(Russ et al.)

Fractiling + Hector =
Hectiling

Implements FRAC in
the HECTOR runtime

DLS API vs. OpenMP
(Govindaswamy)

An API for Adaptive loop
scheduling in shared

address space architectures

PREMA
(Balasubramaniam)

Parallel Competitive
Runtime Environment for

Multicomputer Applications

Affinity Sched. in
IBM OpenMP RT

(Ayguadé et al.)
Implements SAS,

AFS, FGDLS into
IBM’s OpenMP RT

JIT LB
(Cammarota et al.)

Proposes a new run-time technique
1.Profiles iteration space (use

PAPI)
2.Partitions it into non-equal

chunks with equal exec. times
3.Attempts to schedule them or

finds the dynamic schedule most
suitable for particular instance of

loop and architecture
4.Targets irregular loops

Implementation in LIBGOMP of the
new technique + FAC and TSS

Experiments with 4 to 8 threads

BinLPT
(Penna et al.)

A Novel Workload-
Aware Loop Scheduler

for Irregular Parallel
Loops

Static allocation, dynamic
execution

SRR
(Penna et al.)

Smart Round-Robin
Assessing the

Performance of the SRR
Loop Scheduler with
Irregular Workloads

Workload-aware
scheduling

Implementation in
LIBGOMP

Static allocation,
dynamic execution

Parsing the Title
“More Schedules”

² OpenMP has not yet adopted state of the art scheduling (beyond SS and GSS)
² Why more self-scheduling?

² Risk of unexploited parallelism due to increased core counts
² Load imbalance: problem, application, system (e.g., OS preemption, migration;

NUMA effects due to smaller caches / core)
² Central work queue

² Facilitates a dynamic, even distribution of load among processors
² Ensures no processor remains idle while there is work to be done
² Scalability through hierarchies and distribution

² Self-scheduling places the scheduling responsibility on the runtime system
rather than on the operating system or the programmer
² The runtime: optimized for a specific programming model and semantics
² The operating system kernel primitives must be general enough to

accommodate a variety of programming models and languages
² The programmer: not (always) a scheduling expert

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 12

Parsing the Title
“Making the Case”

² One in-house linear algebra kernel
² Four molecular dynamics codes from various OpenMP benchmark suites
² Non-uniformly distributed loops ⇒ Problem and algorithmic variance

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 13

Benchmark suite:
code

#LOC #Parallel
Loops

#Iterations
C.O.V.

Iterations
Exec. Time

Execution time
on 1 thread

OpenMP
Fraction

Not OpenMP
Fraction

Adjoint convolution
decreasing task:
ac

235 1 106 57 % 591.39 s 99.99 % 0.01 %

OpenMP SCR:
c_md 384 4 16×103 57 % 865.31 s 100 % 0.00 %

RODINIA:
lava.md 430 1 13×104 14 % 5168.60 s 99.98 % 0.02 %

SPEC OpenMP2012:
350.md 3,701 10 27×103 8700 % 98.57 s 97.19 % 2.81 %
NAS OpenMP:
MG Class C 1,466 13 101-103 0-1 % 55.70 s 89.04 % 10.96 %

Parsing the Title
“Making the Case”

² Newly added self-scheduling techniques
⟡ tss: trapezoid self-scheduling TSS [‘93]

⟡ Collapses to static,chunk when first
and last chunk equal #iterations/#cores

⟡ fac2: practical factoring FAC [’90-92]
⟡ Unknown mean and stdev of iteration

execution times
⟡ wf2: practical weighted factoring WF [’96]

⟡ Unknown mean and stdev of iteration
execution times

⟡ rand: random self-scheduling RAND
⟡ Random chunk ∈ [#iterations/100×#cores,

#iterations/2×#cores], min ≥ 1, max ≥ min+1

² Usage via schedule(runtime)
² Implementation into open source OpenMP runtime

LaPeSD-libGOMP https://github.com/lapesd/libgomp
OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 14

ST
AT

IC
G
SS

TS
S

FA
C2

W
F2

RA
N
D

SS TH
RE

AD
S

25 25 25 13 12 11 1 T0
25 19 22 13 10 2 1 T1
25 14 18 13 15 6 1 T2
25 11 14 13 14 9 1 T3

8 11 7 6 12 1
6 7 7 5 6 1
5 3 7 7 12 1
3 7 6 6 1
3 4 3 5 1
2 4 4 4 1
1 4 3 9 1

1 4 4 3 1

1 2 2 2 1

1 2 2 10 1

2 3 1

2 1
1 1
1 1
1 1

...
1

100 iterations, 4 threads

Parsing the Title
“Making the Case”

² miniHPC: Fully-controlled 22-node system used for research and teaching

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 15

miniHPC node Characteristic

Sockets 2
Processor Intel Xeon CPU E5-2650 v4
Clock speed 2.40GHz
Architecture x86_64
L1D cache 32KB
L1I cache 32KB
L2 cache 256KB
L3 cache 25600KB
RAM 64GB
Physical CPU cores 20
HT CPU cores 40

Parsing the Title
“Making the Case”

²Executed five benchmarks with
their OpenMP loops scheduled
using 20 threads with
² STATIC, SS, GSS
² TSS, FAC2, WF, RAND
² Originally: no schedule

²System-induced load imbalance
²Five pinning strategies

²Parallel execution time statistics
(median and stdev) of 20 runs of
each experiment

²Does a schedule benefit a
parallel loop?

²Can it handle HW heterogeneity?
OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 16

SOCKET	0 SOCKET	1
CORES C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

PIN1 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

PIN2 T0 T1 T2 T3 T4 T5 T6 T7 T8 × T9 T10 T11 T12 T13 T14 T15 T16 T17 ×
T18 T19

PIN3 T0 T1 T2 T3 T4 T5 T6 × × × T7 T8 T9 T10 T11 T12 × × × ×
T13 T14 T15 T16 T17 T18 T19

PIN4 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 × × × × × × × ×
T12 T13 T14 T15 T16

T17 T18

T19

PIN5 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 × × × × × × × × × ×
T10 T11 T12 T13 T14

T15 T16 T17

T18 T19

CORE	WEIGHTS 1 0.5 0.33 0.25

Parsing the Title
“Making the Case”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 17

ac

min

max

#Iterations
C.O.V.

Iterations
Exec. Time

106 57 %

Parsing the Title
“Making the Case”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 18

c_md

min

max

#Iterations
C.O.V.

Iterations
Exec. Time

16×103 57 %

Parsing the Title
“Making the Case”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 19

lava.md

min

max

#Iterations
C.O.V.

Iterations
Exec. Time

13×104 14 %

Parsing the Title
“Making the Case”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 20

350.md

min

max

#Iterations
C.O.V.

Iterations
Exec. Time

27×103 8700 %

Parsing the Title
“Making the Case”

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 21

MG

min

max

#Iterations
(Class C)

C.O.V.
Iterations

Exec. Time

2-103 0-1 %

To Use or Not to Use Dynamic Loop Self-Scheduling?
No “One-Size-Fits-All”, Wide Gap Between Best and Worst

⟡ Additional schedules provide benefit over existing schedules

⟡ When application and system parallelism is regular, STATIC is sufficient

⟡ When the #iterations is too small to generate enough work and when the
#threads is large, then STATIC is sufficient

⟡ When the cost of allocating loop iterations to a thread is larger than the cost to
execute the loop iterations then dynamic loop scheduling is not beneficial
⟡ Static and affinity-based methods can be used instead

⟡ In the other cases
⟡ High compute intensity
⟡ Nested and irregular parallelism
⟡ System-induced variabilities (e.g., OS, NUMA)
dynamic loop scheduling is needed and self-scheduling offers benefits over
affinity- and work stealing-based methods

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 22

So What?

Advantage
² The newly implemented DLS are immediately usable by existing programs

using our non-standard prototype implementation via schedule(runtime)
² Numerous OpenMP production codes in active use
² Numerous multi/manycore platforms available
² https://bitbucket.org/PatrickABuder/libgomp/src

Usefulness
² On heterogeneous platforms
² Multi/manycore CPUs
² Fat cores or faster connected cores self-schedule more frequently
² Thin cores or slower connected cores self-schedule more rarely

² Multi/manycore CPUs and accelerator cores
² schedule(runtime) for the CPU threads
² dist_schedule(static,chunk) with schedule(runtime[,chunk])

for target teams and their threads on accelerator cores
OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 23

Now What?

⟡ Advocate for the inclusion of more self-scheduling techniques into the
OpenMP standard or as an interface for user-defined schedulers
⟡ To address all sources of load imbalance (problem, algorithmic, systemic)

during execution
⟡ Runtime should exploit user expert knowledge about the application
⟡ Global OpenMP task scheduling still unaddressed

⟡ Implement further state-of-the-art loop self-scheduling techniques (with
feedback loops) into LLVM/Clang

⟡ Extend the proof of concept beyond benchmarks into real applications
⟡ Combine with self-scheduling in MPI layer
⟡ PASC project SPH-EXA, www.pasc-ch.org/projects/2017-2020/sph-exa/

⟡ Implement an intelligent selection mechanism among the many available
options, based on previous work [Boulmier et al. 2017; Banicescu et al. 2013]

OpenMP Loop Scheduling Revisited: Making a Case for More Schedules ADAC6 | Zurich | June 20, 2018 24

Thank you for
your attention!

