

Applications : recent progress at CSCS

Joost VandeVondele, CSCS February, 2018

Gridtools on KNL

Gridtools on KNL

Goal:

KNL backend for the Gridtools library

Done:

- Performance evaluation and optimization of stencils on KNL
 - Blocking decisions
 - Loop ordering decisions
 - Hard-/Software pre-fetching
 - 'auto'-vectorization
- Basic KNL backend in Gridtools (still work in progress)

Future:

Good learning experience, carries over to future processors

In collaboration with Intel.

How hard can it be (I) ?

i-j-k Layout

i-k-j Layout

Block size sensitivity, depending on loop layout

How hard can it be (II) ?

Vertical Advection

Optimal hyper-threading, depending on stencil type

Performance Optimization

Horizontal Diffusion

Vertical Advection

Backend Performance

Old CPU backend (128×128×80)

New KNL backend (128×128×80)

Up to 10x speedup on KNL. Significant gain on Skylake.

Task based programming

HPX for HPC on a node

- library for task based programming, well integrated in C++
- Cholesky decomposition matches Parsec
- Increasingly adding features for HPC (resource partitioning, schedule refinements)

HPX : towards composability

Work on allowing a suspend/resume feature, essential for libraries.

Linear Algebra : communication optimality

Communication Optimal Matrix Multiplication

Adapt and implement the CARMA algorithm.

CARMA is the first algorithm that is shown to be **communication optimal** for **any** matrix dimensions and **all** memory ranges

James Demmel et. al (2013), Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication, IEEE 27th Symposium on Parallel and Distributed Processing

Towards CARMA in production..

In progress

In progress

Goals:

- Find the initial data layout for the existing implementation
- Test and fix the existing implementation
- Make it work for any matrices dimensions and number processors (not just powers of 2)
 - Add a compatibility layer to allow other data layouts as input
- Optimize:
 - Allocate buffers only when necessary
 - Overlap communication and computation
 - Use GPU for additional acceleration
- Experiment with different underlying CARMA data layout without loosing the performance

Verified literature results, increasing usability

Thank you for your attention.