Domain specific library for electronic structure

calculations

M. Taillefumier, A. Kozhevnikov, |. Sivkov, J. VandeVondele,
T. C. Schulthess

ETH Zurich / CSCS (Lugano), Switzerland

February 16, 2018

Piz Daint at CSCS

Current configuration

Cray XC50, 5320 nodes : Intel Xeon E5-2690v3 12C, 2.6GHz,
64GB + NVIDIA Tesla P100 16GB 4.761 Teraflops / node

32 GB/s
bidirectional 732 GB/s
~60 GB/s over

16 Gb of

PCle x16
DORe host r 4 PRl GPU high
~4.2 Teraflops bandwidth
memory emory

Best perfs
Optimize code that fully use GPUs.

Programs for electronic structure code

Most of these programs are older than i do or close to

Basis functions
oS tates Periodic Bloch functions Localized orbitals
(plane-waves or similar)

Atomic
potential treatment

FLEUR

0 Wien2K FHI-aims
Full-potential Exciting FPLO
Elk

VASP

CPMD CP2K

Pseudo-potential Quantum ESPRESSO SIESTA
Abinit OpenMX

Qbox

Problems
too many of them do not perform well on hybrid architecture if not

at all

Porting code to GPUs : No silvers bullets
Usually involve several steps

@ refactor the code and identify bottlenecks

@ change data layout

@ optimize CPUs threads and prepare code for node level
parallelization

@ then move compute intensive kernels to GPUs.

4

@ We have to do that for all major codes. Not enough men
power for that

@ working on these codes is difficult.

A\

Porting code to GPUs : Additional problems

on the GPU side

@ Too many ways to program GPUs : CUDA, OpenCL,
OpenACC which one to choose ?

@ combine GPUs with MPI and openmp

@ Many supercomputers have multi-gpu per node (Summit)

On the developer side : Two options

© Scientists are not computer scientists so it can represent a
huge challenge for them.

@ Software ingeneers will also have difficulties with the base
codes (lack of clear structure most of the time).

How can we solve this cannundrum 7

Extend the legacy Fortran codes with the API calls to a
domain-specific library which runs on GPUs and other novel

architectures.
(Quantum ESPRESSO | (Exciting / Elk

(Quantum ESPRESSO | (Exciting / Elk)

inherent PW / PAW inherent LAPW

inherent PW / PAW inherent LAPW
implementation implementation

implementation implementation

]..

Advantages

@ Scientists can contribute to new features while software
ingeneers can work on the different backends

@ easier maintenance and portability to new architectures

Where to draw the line : Calculation of the ground state

Eigen-value problem

/ (- %A + Ueff(r))wj(r) =¢&;¢;(r) \

Effective potential construction Density generation
r new _ . 2
vess@) = [L vl 4ven() O = D)
J

\ Density mixing /
p(r) = ap™"(x) + (1 — a)p*(x)

@ Wavefunctions and energies

@ charge density and magnetization
@ force and stress tensors

@ We have everything for the rest of the calculations

SIRIUS Library

https://github.com /electronic-structure /SIRIUS
SIRIUS is a collection of classes that abstract away the different building
blocks of PW and LAPW codes. The class composition hierarchy starts
from the most primitive classes and progresses towards several high-level
classes. The code is written in C++11 with MPI, OpenMP and CUDA

programming models.

DFT_ground_state
Band
Local_operator |
Potential |
Density
K_point_set
K_point
Non_local_operator
Beta_projectors Periodic_{ i \ _¢ \
Simulation_context
Unit_cell Radial_i [A X Step_f
Atom_type Radial_grid
Atom Spline
Eigensolver [Wave_functions
linalg [
dmatrix
BLACS_grid [FFT3D |
MPI_grid | Gvec
[matrix3d [vector3d

Communicator | mdarray [splindex

Doxygen documentation

https://electronic-structure.github.io/SIRIUS-doc/

Example of interoperability : Quantum expresso + SIRIUS

Initialization phase SIRIUS

read input file, read pseudopotentials,
create a list of k-points, initialize data
structures, communicators, etc.

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

‘ initialize simulation context

set k-points

‘ initialize K_point_set class
initialize Density class
initialize Potential class
initialize DFT_ground_state class
generate initial density
get rho(G) and mag(G)

SCF cycle SIRIUS

—

— solve band problem and find KS orbitals
get band energies
‘ find band occupancies ‘ ‘ set band occupancies

‘ generate unsymmetrized rho(G) and mag(G)

get rho(G) and mag(G)

‘ symmetrize rho(G) and mag(G) ‘
L mix rho(G) and mag(G)
generate Ver(r) and Ve(G) ‘ set Ver(G)

get forces generate forces

\—o get stress tensor

generate stress tensor

Really do the most intensive computing parts on GPUs

Variable cell relaxation of Si63Ge

Performance benchmark of the QE, Cuda Fortran version of QE and
SIRIUS-enabled QE codes for the 64-atom unit cell of Si;_,Ge,. The
runs were performed on hybrid nodes with 12-core Intel Haswell @2.5GHz
+NVIDIA Tesla P100 card (QE-GPU, QE-SIRIUS-GPU) and on nodes
with 68-core Intel Xeon Phi processor @1.4 GHz (QE-KNL). Time for the
full vc-relax calculation is reported.

B QE-KNL (CINECA) B QE-SIRIUS-KNL (CSCS) M QE-SIRIUS-GPU (CSCS) B QE-GPU (NVIDIA)

2000

1500

1000

Time to solution (sec)

o
=3
S

Number of nodes

Ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the
288-atom unit cell of Pt cluster embedded in water. The runs were
performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (BW),
on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla
P100 card (GPU) and on nodes with 64-core Intel Xeon Phi processor
©1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs. Time

for the SCF ground state calculation is reported.
B QE-v6.2-BW W QE-sirius-BW M QE-sirius-KNL W QE-sirius-GPU W QE-NVIDIA-GPU

400

@
S
3

Time to solution (sec.)
= N
3 15}
8 8

Number of nodes

