
Domain specific library for electronic structure
calculations

M. Taillefumier, A. Kozhevnikov, I. Sivkov, J. VandeVondele,
T. C. Schulthess

ETH Zurich / CSCS (Lugano), Switzerland

February 16, 2018



Piz Daint at CSCS

Current configuration

Cray XC50, 5320 nodes : Intel Xeon E5-2690v3 12C, 2.6GHz,
64GB + NVIDIA Tesla P100 16GB 4.761 Teraflops / node

Best perfs

Optimize code that fully use GPUs.



Programs for electronic structure code

Most of these programs are older than i do or close to

Problems

too many of them do not perform well on hybrid architecture if not
at all



Porting code to GPUs : No silvers bullets

Usually involve several steps

refactor the code and identify bottlenecks

change data layout

optimize CPUs threads and prepare code for node level
parallelization

then move compute intensive kernels to GPUs.

Problems

We have to do that for all major codes. Not enough men
power for that

working on these codes is difficult.



Porting code to GPUs : Additional problems

on the GPU side

Too many ways to program GPUs : CUDA, OpenCL,
OpenACC which one to choose ?

combine GPUs with MPI and openmp

Many supercomputers have multi-gpu per node (Summit)

On the developer side : Two options

1 Scientists are not computer scientists so it can represent a
huge challenge for them.

2 Software ingeneers will also have difficulties with the base
codes (lack of clear structure most of the time).



How can we solve this cannundrum ?

Extend the legacy Fortran codes with the API calls to a
domain-specific library which runs on GPUs and other novel
architectures.

Advantages

Scientists can contribute to new features while software
ingeneers can work on the different backends

easier maintenance and portability to new architectures



Where to draw the line : Calculation of the ground state

Outputs

Wavefunctions and energies

charge density and magnetization

force and stress tensors

We have everything for the rest of the calculations



SIRIUS Library

https://github.com/electronic-structure/SIRIUS
SIRIUS is a collection of classes that abstract away the different building

blocks of PW and LAPW codes. The class composition hierarchy starts

from the most primitive classes and progresses towards several high-level

classes. The code is written in C++11 with MPI, OpenMP and CUDA

programming models.



Doxygen documentation

https://electronic-structure.github.io/SIRIUS-doc/



Example of interoperability : Quantum expresso + SIRIUS

Goals

Really do the most intensive computing parts on GPUs



Variable cell relaxation of Si63Ge

Performance benchmark of the QE, Cuda Fortran version of QE and

SIRIUS-enabled QE codes for the 64-atom unit cell of Si1−xGex . The

runs were performed on hybrid nodes with 12-core Intel Haswell @2.5GHz

+NVIDIA Tesla P100 card (QE-GPU, QE-SIRIUS-GPU) and on nodes

with 68-core Intel Xeon Phi processor @1.4 GHz (QE-KNL). Time for the

full vc-relax calculation is reported.



Ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the

288-atom unit cell of Pt cluster embedded in water. The runs were

performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (BW),

on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla

P100 card (GPU) and on nodes with 64-core Intel Xeon Phi processor

@1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs. Time

for the SCF ground state calculation is reported.


