
Performance Tools for Task Parallel Programs

An Huynh

University of Tokyo

ADAC Workshop, Tokyo, Japan
February 15, 2018

1 / 29

About me

▸ I am a PhD candidate at the University of Tokyo (supervisor: Prof.
Kenjiro Taura), expected to graduate in March 2018.

▸ Research: analyzing performance of task parallel programs

▸ Thesis title: “Analyzing Performance Differences of Task Parallel
Runtime Systems based on Scheduling Delays”

▸ Today I’m going to introduce our performance toolset (DAGViz)
from the perspective of performance tools for parallel programs.

2 / 29

Outline

▸ A light classification of common performance tools

▸ DAGViz
▸ a task-centric performance tool for task parallel programs

▸ Related work
▸ some similar approaches

▸ Conclusion

3 / 29

Profilers vs. Tracers

▸ profilers summarize information about events during a program run
▸ tracers record all occurrences of events with timestamps
▸ tracing vs. profiling

tracing consumes more memory
a trace is exhaustive, can be used to reconstruct a profile

▸ most tools offer both profiling and tracing

profile measurement points

- at t0, enter function A

- at t1, send to thread X

- at t2, enter function B

- at t3, exit function B

- at t4, event E occurs

- at t5, write data to file F

- at t6, exit function A

- ...

trace

t0

t2

t3

t4

t5

t1

t6

summarized

time

4 / 29

Measurement approaches for collecting profile/trace data

▸ instrumentation: measurement probes are injected inside the program code
by some method

▸ e.g., directly in source, compiler injects, inject in binary, (instrumented library)

▸ sampling: program’s execution is interrupted the from outside to collect
samples

▸ e.g., interval timer, hardware counter overflow, instruction-based sampling

▸ sampling vs. instrumentation
sampling is less related to program source
but it has an adjustable measurement resolution (by adjusting sampling frequency)
useful for controlling overhead

measurement points

time

program code

instrumentation sampling

periodic interval
execution

profile

trace

5 / 29

A light classification of some performance tools

▸ most of tools produce both tracing and profiling data

▸ some tools use either only instrumentation (e.g., Score-P, Vampir,
TAU), only sampling (e.g., HPCToolkit, perf), or both (e.g., gprof,
Extrae, VTune)

▸ two most common analyses are call path profiles and timelines
visualizations of traces

instrumentation sampling profiling tracing
gprof

Extrae/Paraver
VTune

HPCToolkit
perf

Score-P
(Vampir,Scalasca,TAU)

.

6 / 29

A light classification of some performance tools

▸ most of tools produce both tracing and profiling data

▸ some tools use either only instrumentation (e.g., Score-P, Vampir,
TAU), only sampling (e.g., HPCToolkit, perf), or both (e.g., gprof,
Extrae, VTune)

▸ two most common analyses are call path profiles and timelines
visualizations of traces

instrumentation sampling profiling tracing
gprof

Extrae/Paraver
VTune

HPCToolkit
perf

Score-P
(Vampir,Scalasca,TAU)

.

6 / 29

Call path profiles

gprof [Graham et al. 2004] collects in-
struction pointer and return ad-
dress→ function & its calling parent

example

caller2caller1

sub1 sub2 sub3

text-based interface GUI

HPCToolkit [Adhianto et al. 2010] collects the full
function call path by walking up the stack.

HPCToolkit’s hpcviewer GUI

call path profile
organized in tree

Score-P [Knupfer et al. 2012] organizes profile
data in 3 dimensions: metrics–program–system
(cube4 format).

Score-P’s CUBE GUI

three panes of
three dimensions

→ help identify where in program code resources (e.g., execution time) are
spent (function-centric) 7 / 29

Timelines visualizations of traces

Many tools provide timelines visualizations (thread activities over time) of traces:

▸ e.g., Paraver [Llort et al. 2013], HPCToolkit [Adhianto et al. 2010], Vampir [Nagel

et al. 1996], Jumpshot [Zaki et al. 1999], Jedule [Hunold et al. 2010], Aftermath
[Drebes et al. 2014]

Paraver’s GUI
HPCToolkit’s hpctraceview GUI

Vampir’s GUI

→ help pinpoint load imbalance among threads (thread-centric)

8 / 29

Task parallel programming models

Task parallel programming models expose a unified interface of logical
tasks to programmers:

⌣ arbitrarily nested hierarchical parallelism

⌣ dynamic and automatic load balancing by (provably efficient) work stealing

→ a task-centric approach based on logical task structure is more
meaningful

� �
1 void quicksort(A,a,b,threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A,a,b);
4 } else {
5 m = partition(A,a,b);
6 quicksort(A,a,m,threshold) ;
7 quicksort(A,m,b,threshold);
8

9 }
10 }� �

R0

R1 G0

R2 R5

R3 R4

... ...

G1 B0

G2 B4

G3 G4

...

B1 C0

B2 B3

... ...

C1 C2

C3 C4

...

runtime scheduler

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

9 / 29

Task parallel programming models

Task parallel programming models expose a unified interface of logical
tasks to programmers:

⌣ arbitrarily nested hierarchical parallelism

⌣ dynamic and automatic load balancing by (provably efficient) work stealing

→ a task-centric approach based on logical task structure is more
meaningful

� �
1 void quicksort(A,a,b,threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A,a,b);
4 } else {
5 m = partition(A,a,b);
6 create_task(quicksort(A,a,m,threshold));
7 quicksort(A,m,b,threshold);
8 wait_tasks;
9 }

10 }� �

R0

R1 G0

R2 R5

R3 R4

... ...

G1 B0

G2 B4

G3 G4

...

B1 C0

B2 B3

... ...

C1 C2

C3 C4

...

task graph (DAG)

runtime scheduler

Cilk/Cilk Plus,

OpenMP Tasks,

TBB,

MassiveThreads,

Qthreads, . . .
Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

hardware resources

9 / 29

What is work stealing?

Work stealing is a provably efficient scheduling strategy deployed in many parallel
and distributed systems:

▸ each worker maintains a double-ended queue (deque) of ready tasks
▸ a worker pushes/pops tasks from the bottom end of its deque
▸ an idle worker becomes a thief and goes steal a task from another worker
(victim)

▸ a thief steals tasks from the top end of the victim’s deque
→ idle workers bear the overhead of distributing work

work stealing scheduler can perform within a
factor of the optimal lower bound:

▸ TP ≥ T1/P
▸ TP ≥ T∞
▸ TP ≤ c1T1/P + c∞T∞ [Blumofe et al. 1994]
▸ c1: work overhead (e.g., push(), pop())
▸ c∞: stealing overhead (e.g., steal())

Worker Worker Worker

top

bottom

pop()push()

steal()steal()

10 / 29

What is work stealing?

Work stealing is a provably efficient scheduling strategy deployed in many parallel
and distributed systems:

▸ each worker maintains a double-ended queue (deque) of ready tasks
▸ a worker pushes/pops tasks from the bottom end of its deque
▸ an idle worker becomes a thief and goes steal a task from another worker
(victim)

▸ a thief steals tasks from the top end of the victim’s deque
→ idle workers bear the overhead of distributing work

work stealing scheduler can perform within a
factor of the optimal lower bound:

▸ TP ≥ T1/P
▸ TP ≥ T∞
▸ TP ≤ c1T1/P + c∞T∞ [Blumofe et al. 1994]
▸ c1: work overhead (e.g., push(), pop())
▸ c∞: stealing overhead (e.g., steal())

Worker Worker Worker

top

bottom

pop()push()

steal()steal()

10 / 29

Scheduler implementation affects performance a lot

▸ almost all systems implement work stealing

▸ but there are still large performance differences among systems

▸ hence, a practical performance tool for evaluating task scheduler
implementations is necessary

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet fft speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

30%

FFT

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet health speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

8x

Health

11 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created
▸ At wait tasks, the parent waits for

children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent task parallel
primitives

B

create_task

wait_tasks

task A is divided
into 3 nodes

A () {
 S1;
 create_task(B);
 S2;
 wait_tasks;
 S3;
} S1

S2

S3

12 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created

▸ At wait tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

parent stops
by create_task

parent resumes

B

S1

S2

A () {
 S1;
 create_task(B);
 S2;
 wait_tasks;
 S3;
}

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created

▸ At wait tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

parent stops
by create_task

parent resumes

B

work-first:
the same worker
switches to child task

A () {
 S1;
 create_task(B);
 S2;
 wait_tasks;
 S3;
} S1

S2

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created

▸ At wait tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

parent stops
by create_task

parent resumes

B

parent-first:
the same worker continues
executing the parent

A () {
 S1;
 create_task(B);
 S2;
 wait_tasks;
 S3;
} S1

S2

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created
▸ At wait tasks, the parent waits for

children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

B
child ends parent stops

by wait_tasks

parent resumes

A () {
 ...
 create_task(B);
 ...
 wait_tasks;
 ...
}

A () {
 S1;
 create_task(B);
 S2;
 wait_tasks;
 S3;
}

S2

S3

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created
▸ At wait tasks, the parent waits for

children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

B

create_task

wait_tasks

task A is divided
into 3 nodes

A () {
 S1;
 create_task(B);
 S2;
 wait_tasks;
 S3;
} S1

S2

S3

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created
▸ At wait tasks, the parent waits for

children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

A () {
 S1;

 create_task(B;);

 S2;

 wait_tasks;

 S3;
}

B

S1

S2

S3

recording timestamps

time

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created
▸ At wait tasks, the parent waits for

children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

t0
t1

t2

A () {
 S1;
 t0;
 create_task(t1; B; t2;);
 t3;
 S2;

 wait_tasks;

 S3;
}

B

S1

S2

S3

t3

recording timestamps

time

13 / 29

Computation DAG trace

Two basic operations:
create task and wait tasks

▸ At create task, a new task is created
▸ At wait tasks, the parent waits for

children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which
▸ nodes: are serial code segments

separated by task parallel primitives

▸ edges: represent these task parallel
primitives

t4

t5

t0
t1

t2

A () {
 S1;
 t0;
 create_task(t1; B; t2;);
 t3;
 S2;
 t4;
 wait_tasks;
 t5;
 S3;
}

B

S1

S2

S3

t3

recording timestamps

time

13 / 29

Our performance toolset

Our performance toolset includes 3 parts:

▸ tpswitch: a portable wrapper around different task APIs
▸ DAG Recorder: a tracer that captures computation DAG
▸ DAGViz: a visualization and analysis tool for computation DAG

14 / 29

tpswitch� �
1 /* tpswitch.h */
2

3 /* To Cilk Plus */
4 #define create_task(st) cilk_spawn(st)
5 #define wait_tasks cilk_sync
6

7 /* To OpenMP */
8 #define create_task(st) pragma_omp_task(,st)
9 #define wait_tasks pragma_omp_taskwait

10

11 /* To TBB */
12 #define create_task(st) __tg__.run_([=]{st;})
13 #define wait_tasks __tg__.wait_()� �

two generic primitives translate to
equivalent ones in specific systems
with measurement probes.

#include <tpswitch/tpswitch.h>

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 create_task({x = fib(n-1);});
 y = fib(n-2);
 wait_tasks();
 return x + y;
}

Cilk Plus OpenMP
TBB
(MassiveThreads, Qthreads)

#include <cilk/cilk.h>

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 cilk_sync;
 return x + y;
}

#include <omp.h>

int fib(int n) {
 if (n < 2) return n;
 int x, y;
#pragma omp task
 { x = fib(n-1); }
 y = fib(n-2);
#pragma omp taskwait
 return x + y;
}

#include <tbb/task_group.h>

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 tbb::task_group tg;
 tg.run([&]{x = fib(n-1);});
 y = fib(n-2);
 tg.wait();
 return x + y;
}

15 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6

7

8 create_task(quicksort(A,a,m,threshold););
9

10

11 quicksort(A,m,b,threshold);
12

13 wait_tasks;
14

15 }
16 }� �

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6

7

8 cilk_spawn

{t1;

quicksort(A,a,m,threshold);
9

10

11 quicksort(A,m,b,threshold);
12

13 cilk_sync;
14

15 }
16 }� �

To Cilk Plus

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6

7 t0;
8 cilk_spawn {t1;quicksort(A,a,m,threshold);t2;}
9 t3;

10

11 quicksort(A,m,b,threshold);
12 t4;
13 cilk_sync;
14 t5;
15 }
16 }� �

To Cilk Plus with DAG Recorder

DAG captured by DAG

Recorder

t4
t5

t0
t1

t2

t3

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6

7

8 create_task(quicksort(A,a,m,threshold););
9

10

11 quicksort(A,m,b,threshold);
12

13 wait_tasks;
14

15 }
16 }� �

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6

7 #pragma omp task
8

{t1;

quicksort(A,a,m,threshold);
9

10 #pragma omp task
11 quicksort(A,m,b,threshold);
12

13 #pragma omp taskwait
14

15 }
16 }� �

To OpenMP

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6 t0;
7 #pragma omp task
8 {t1;quicksort(A,a,m,threshold);t2;}
9 t3;

10 #pragma omp task
11 quicksort(A,m,b,threshold);
12 t4;
13 #pragma omp taskwait
14 t5;
15 }
16 }� �

To OpenMP with DAG Recorder

DAG captured by DAG

Recorder

t4
t5

t0
t1

t2

t3

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6

7

8 create_task(quicksort(A,a,m,threshold););
9

10

11 quicksort(A,m,b,threshold);
12

13 wait_tasks;
14

15 }
16 }� �

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6 tbb::task group tg;
7

8 tg.run([&]{

t1;

quicksort(A,a,m,threshold);

t1;

});
9

10

11 quicksort(A,m,b,threshold);
12

13 tg.wait();
14

15 }
16 }� �

To TBB

16 / 29

tpswitch

� �
1 void quicksort(A, a, b, threshold) {
2 if (b - a <= threshold) {
3 simple_sort(A, a, b);
4 } else {
5 m = partition(A, a, b);
6 tbb::task group tg;
7 t0;
8 tg.run([&]{ t1; quicksort(A,a,m,threshold); t2; });
9 t3;

10

11 quicksort(A,m,b,threshold);
12 t4;
13 tg.wait();
14 t5;
15 }
16 }� �

To TBB with DAG Recorder

DAG captured by DAG

Recorder

t4
t5

t0
t1

t2

t3

16 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� �

create

wait

end

task

section

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � S3

create

wait

end

task

section

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� �

f(n-1)

S1

S2

S3

create

wait

end

task

section

f(n-2)

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

flattened to file

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

17 / 29

DAG Recorder

▸ DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

▸ leaf nodes: create, wait, end
▸ internal nodes: section (synchronization scope inside a task), task

▸ DAG Recorder flattens the DAG to file when the program finishes.

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� � .dag file

17 / 29

On-the-fly DAG contraction

▸ One challenge: storing every task in a fine-grained program
consumes large memory

▸ Solution: collapse “uninteresting” subgraphs (e.g., executed solely
by a single worker) into single nodes

▸ still retain aggregate performance information of removed topology
(e.g., total work, critical path)

▸ memory overhead now scales with steals across workers rather than
task creations

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� �

.dag file

18 / 29

On-the-fly DAG contraction

▸ One challenge: storing every task in a fine-grained program
consumes large memory

▸ Solution: collapse “uninteresting” subgraphs (e.g., executed solely
by a single worker) into single nodes

▸ still retain aggregate performance information of removed topology
(e.g., total work, critical path)

▸ memory overhead now scales with steals across workers rather than
task creations

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� �

.dag file

18 / 29

On-the-fly DAG contraction

▸ One challenge: storing every task in a fine-grained program
consumes large memory

▸ Solution: collapse “uninteresting” subgraphs (e.g., executed solely
by a single worker) into single nodes

▸ still retain aggregate performance information of removed topology
(e.g., total work, critical path)

▸ memory overhead now scales with steals across workers rather than
task creations

� �
1 f(n) {
2 S1;
3 create_task(f(n-1));
4 f(n-2);
5 S2;
6 wait_tasks;
7 S3;
8 }� �

.dag file

18 / 29

DAGViz

▸ DAGViz reads DAG from file and re-constructs its hierarchical
structure in memory to visualize

▸ One challenge: a (collapsed) DAG may still be very large, taking
long time to load and render

▸ Solution: DAGViz deploys on-demand hierarchical expansion

1 the DAG is expanded on demand in a top-down manner
2 only expanded branch of the DAG is loaded and rendered

.dag file

screen
only necessary parts are loaded

not loaded part

19 / 29

Demonstration

20 / 29

DAGViz’s GUI and visualizations

DAGViz currently has two GUI versions based on
two popular GUI toolkits:

▸ C-based GTK+: GUI, rendering, and logics are
written in C

▸ C++ and Python-based Qt5: GUI is written in
Python, rendering is written in C++, logics are
written in C DAGViz’s GUI

DAGViz provides many kinds of visualizations of the DAG:

▸ basic DAG

▸ DAG with timing on vertical axis

▸ timelines together with parallelism profile

DAG

time

DAG with timing on y-axis time

timelines

parallelism
profile

21 / 29

Case studies

We have found causes of performance bottlenecks in many cases:

▸ SparseLU
▸ Cilk Plus, TBB have slow work stealing speed
▸ Qthreads delays child tasks deliberately

▸ Alignment
▸ OpenMP suffers from its size-limited task queue

▸ FFT
▸ OpenMP suffers from its stack-overflow-avoiding measure
▸ Qthreads delays child tasks deliberately

▸ Blackscholes
▸ all systems suffer from Blackscholes’ too small grain size

▸ Bodytrack
▸ all systems suffer from Bodytrack’s many long serial sections

▸ . . .

22 / 29

Related work

Some tools that visualize task graph (DAG) of task parallel programs are:

▸ ThreadScope [Wheeler and Thain 2010]: (Cilk, Qthreads, Pthreads) task graph
with memory objects

▸ Temanejo [Brinkmann et al. 2011]: (OmpSs) task graph with dataflow
dependencies

▸ Flow Graph Analyzer [Tovinkere and Voss 2014]: (TBB) task graph of TBB’s
flow graph interface

▸ Grain graph [Muddukrishna et al. 2016]: (OpenMP) task graph of tasks and
loop chunks

▸ . . .

23 / 29

ThreadScope
[Wheeler and Thain 2010]

ThreadScope uses Graphviz to visualize code regions and
accessed memory objects.

▸ Cilk, Qthreads, Pthreads

[Wheeler and Thain 2010]

Graphviz [Gansner and North 2000] is
a popular graph rendering engine:

▸ flatly renders all nodes & edges
at once (flat layout)

▸ focuses on aesthetic aspects
in layouts

→ easily gets slow with large graphs

DAGViz is scalable with hierarchical
expansion

� �
1 digraph G {
2 /* nodes */
3 C [style=filled,shape=circle];
4 T [style=circle,shape=rectangle];
5 S [style=circle,shape=square];
6 W [style=filled,shape=circle];
7 E [style=filled,shape=circle];
8

9 /* edges */
10 C->T;
11 C->S;
12 T->E;
13 S->W;
14 W->E;
15 }� �

C

T

S

E

W

24 / 29

Temanejo
[Brinkmann et al. 2011]

Temanejo interactively visualizes task graph with dataflow during a run of an
OmpSs program

▸ OmpSs = OpenMP Tasks model + Mercurium compiler + Nanos++ runtime

▸ only OmpSs

▸ flat layout (NetworkX pakage)

Temanejo’s online visualization of task graph with
data dependencies [Brinkmann et al. 2011]

margin color: scheduling state

node color: task type

node shapes: workers

edge label/color: memory address

25 / 29

Flow Graph Analyzer
[Tovinkere and Voss 2014]

Flow Graph Analyzer captures and visu-
alizes task graph from program written
with FLow Graph Interface of TBB 4.0.
▸ only TBB
▸ flat layout

Flow Graph Analyzer’s GUI [Tovinkere and Voss 2014]

task graph

treemap

timelines

concurrency
histogram

statistics

An example program

with Flow Graph Interface

hello world
msg finished

26 / 29

Grain graph
[Muddukrishna et al. 2016]

Grain graph captures and visualizes a graph of execution intervals of tasks and
loop chunks (grains) from a run of an OpenMP program.
▸ only OpenMP

▸ flat layout

▸ non-interactive visualization (igraph package)

kdtree’s grain graph [Muddukrishna et al. 2016]
27 / 29

Publications

▸ A. Huynh, K. Taura, “Delay Spotter: A Tool for Spotting Scheduler-Caused Delays in
Task Parallel Runtime Systems”, IEEE International Conference on Cluster Computing
(CLUSTER ’17)

one zoomed-in spot
power-scaled linear-scaled

▸ A. Huynh, D. Thain, M. Pericas, K. Taura, “DAGViz: A DAG Visualization Tool for
Analyzing Task-Parallel Program Traces”, International Workshop on Visual
Performance Analysis, held in conjunction with SC15 (VPA ’15)

hierarchical expansion of DAG nodes DAGViz’s GUI
28 / 29

Conclusion

▸ DAGViz–a task-centric performance toolset for task parallel programs and
schedulers:

⌣ logical task structure
⌣ scalable measurement (with DAG contraction)
⌣ scalable rendering (with on-demand hierarchical expansion)

▸ With a distinct focus on task schedulers, we hope DAGViz toolset to be a
good addition to the existing large set of parallel performance tools.

▸ Future work:
▸ to extend to distributed-memory systems
▸ to analyze task locality with computation DAG

Thank you for listening!

29 / 29

Conclusion

▸ DAGViz–a task-centric performance toolset for task parallel programs and
schedulers:

⌣ logical task structure
⌣ scalable measurement (with DAG contraction)
⌣ scalable rendering (with on-demand hierarchical expansion)

▸ With a distinct focus on task schedulers, we hope DAGViz toolset to be a
good addition to the existing large set of parallel performance tools.

▸ Future work:
▸ to extend to distributed-memory systems
▸ to analyze task locality with computation DAG

Thank you for listening!

29 / 29

	Introduction

