An Huynh

University of Tokyo

ADAC Workshop, Tokyo, Japan
February 15, 2018

1/29

About

me

| am a PhD candidate at the University of Tokyo (supervisor: Prof.
Kenjiro Taura), expected to graduate in March 2018.

Research: analyzing performance of task parallel programs

Thesis title: “Analyzing Performance Differences of Task Parallel
Runtime Systems based on Scheduling Delays”

Today I'm going to introduce our performance toolset (DAGViz)
from the perspective of performance tools for parallel programs.

2/29

v

v

v

v

A light classification of common performance tools
DAGViz

» a task-centric performance tool for task parallel programs
Related work

» some similar approaches

Conclusion

3/29

Profilers vs. Tracers

» profilers summarize information about events during a program run
» tracers record all occurrences of events with timestamps
» tracing vs. profiling

X tracing consumes more memory

O a trace is exhaustive, can be used to reconstruct a profile

» most tools offer both profiling and tracing

profile measurement points trace

]

summarized - at ty, enter function A ——>

:4:- at ty, send to thread X R — t;
i

e e

- att,, enter functionB = —— t
2

T

\- at t,, exit function B \
l l
N - at t,, event E occurs \ t3
- at ts, write data to file F : ts
]

|
T
N- at g, exit function A \ ts
i
time l R

Measurement approaches for collecting profile/trace data

» instrumentation: measurement probes are injected inside the program code
by some method
> e.g., directly in source, compiler injects, inject in binary, (instrumented library)
» sampling: program'’s execution is interrupted the from outside to collect
samples
» e.g., interval timer, hardware counter overflow, instruction-based sampling
» sampling vs. instrumentation

X sampling is less related to program source
O but it has an adjustable measurement resolution (by adjusting sampling frequency)
useful for controlling overhead

program code
P —
measurement points
instrumentation sampling

e T e L e el s |
i i
i i
i i
i |
CHRR 1 ISR 1 O IS DO IS IS i

execution

periodic interval time

A light classification of some performance tools

» most of tools produce both tracing and profiling data

» some tools use either only instrumentation (e.g., Score-P, Vampir,
TAU), only sampling (e.g., HPCToolkit, perf), or both (e.g., gprof,
Extrae, VTune)

instrumentation | sampling | profiling | tracing

gprof O O O
Extrae/Paraver O O 0
VTune O O O O
HPCToolkit O O O
perf O O O
Score—P o o o

(Vampir,Scalasca, TAU)

6/29

A light classification of some performance tools

» most of tools produce both tracing and profiling data

» some tools use either only instrumentation (e.g., Score-P, Vampir,
TAU), only sampling (e.g., HPCToolkit, perf), or both (e.g., gprof,

Extrae, VTune)

» two most common analyses are call path profiles and timelines
visualizations of traces

instrumentation | sampling | profiling | tracing
gprof O O O
Extrae/Paraver O O 0
VTune O O O O
HPCToolkit O O O
perf O O O
Score-P o o o

(Vampir,Scalasca, TAU)

6/29

Call path profiles

@lleg/total parents

s Galledesel!
Glleg/iotat | eildren

o

gprof [Graham et al. 2004] collects in-
struction pointer and return ad-
dress — function & its calling parent

"
o oL s
o o0 2se/2%6
o s 2se/258 Sin (7]
o o e Setcirastday 1111
o P .] printt (16

o om0 1 Stof 1211

o PR ot 31

ol o

HPCToolkit [Adhianto et al. 2010] collects the full
function call path by walking up the stack.

call path profile
organized in tree

HPCToolkit's hpcviewer GUI

Score-P [Knupfer et al. 2012] organizes profile
data in 3 dimensions: metrics—program—system
(cube4 format).

three panes o T

three dimensions = =

 e—
Score-P’s CUBE GUI

— help identify where in program code resources (e.g., execution time) are
spent (function-centric)

Timelines visualizations of traces

Many tools provide timelines visualizations (thread activities over time) of traces:

> e.g., Paraver [Llort et al. 2013], HPCToolkit [Adhianto et al. 2010], Vampir [Nagel
et al. 1996], Jumpshot [Zaki et al. 1999], Jedule [Hunold et al. 2010], Aftermath
[Drebes et al. 2014]

HPCToolkit’s hpctraceview GUI

Vampir's GUI

Paraver’'s GUI

— help pinpoint load imbalance among threads (thread-centric)

Task parallel programming models

Task parallel programming models expose a unified interface of logical
tasks to programmers:

arbitrarily nested hierarchical parallelism
dynamic and automatic load balancing by (provably efficient) work stealing

— a task-centric approach based on logical task structure is more
meaningful

void quicksort(A,a,b,threshold) {
if (b - a <= threshold) {
simple_sort(A,a,b);
} else {
m = partition(A,a,b);
quicksort(A,a,m,threshold) ;
quicksort (A,m,b,threshold);

© O NG GA W N~

.
i=]
-

9/29

Task parallel programming models

Task parallel programming models expose a unified interface of logical
tasks to programmers:

arbitrarily nested hierarchical parallelism
dynamic and automatic load balancing by (provably efficient) work stealing

— a task-centric approach based on logical task structure is more
meaningful

void quicksort(A,a,b,threshold) {

if (b - a <= threshold) {
simple_sort(A,a,b);

} else {
m = partition(A,a,b);
create_task(quicksort(A,a,m,threshold));
quicksort (A,m,b,threshold);
wait_tasks;

Cilk/Cilk Plus,
OpenMP Tasks,
TBB,
MassiveThreads,
Qthreads, ..

© O NG GA W N~

.
o
-

hardware resources

What is work stealing?

Work stealing is a provably efficient scheduling strategy deployed in many parallel
and distributed systems:

» each worker maintains a double-ended queue (deque) of ready tasks
» a worker pushes/pops tasks from the bottom end of its deque
» an idle worker becomes a thief and goes steal a task from another worker
(victim)
» a thief steals tasks from the top end of the victim’s deque
— idle workers bear the overhead of distributing work

10 /29

What is work stealing?

Work stealing is a provably efficient scheduling strategy deployed in many parallel
and distributed systems:

» each worker maintains a double-ended queue (deque) of ready tasks

» a worker pushes/pops tasks from the bottom end of its deque

» an idle worker becomes a thief and goes steal a task from another worker

(victim)
» a thief steals tasks from the top end of the victim’s deque
— idle workers bear the overhead of distributing work

work stealing scheduler can perform within a

factor of the optimal lower bound: ”/'ﬁ//*\”’
» Tp2 Ty/P L
» Tp> Too
» Tp<c1 T1/P+ ceo Too [Blumofe et al. 1994] =
» ¢;: work overhead (e.g., push(), pop()) prowel s wee o

» Coo: stealing overhead (e.g., steal())

10 /29

Scheduler implementation affects performance a lot

» almost all systems implement work stealing
» but there are still large performance differences among systems

» hence, a practical performance tool for evaluating task scheduler
implementations is necessary

cilkplus —— om thb cilkplus —— omp tob
plus p mth —— ath

ath

comet fft speedup (i, tbbmalloc, dr=0) comet health speedup (i, tbbmalloc, dr=0)

speedup.
speedup

cores

Health

Computation DAG trace

Two basic operations:
create_task and wait_tasks

> At create_task, a new task is created
» At wait_tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which

> nodes: are serial code segments
separated by task parallel primitives

> edges: represent task parallel
primitives

AQOA{
S1;
create_task(B);

S2; e i
wait_tasks; Fask A is divided
- into 3 nodes
S3;

}

—»., create_task

<_\,‘: wait_tasks

Two basic operations:
create_task and wait_tasks

AQ{
S1;
create_task(B);
S2;
wait_tasks;
S3;

» At create_task, a new task is created

parent stops
...... by create_task

,,,,, --parent resumes

13/29

Two basic operations:
create_task and wait_tasks

» At create_task, a new task is created

AOA{
S1;
create_task(B);
S2;
wait_tasks;
S3; parent stops
) 2 N by create_task

--parent resumes

work-first:
the same worker
switches to child task

13/29

Two basic operations:
create_task and wait_tasks

» At create_task, a new task is created

AOA{
S1;
create_task(B);
S2;
wait_tasks;
S3; parent stops
) 2 N by create_task

--parent resumes

parent-first:
the same worker continues
executing the parent

13/29

Two basic operations:
create_task and wait_tasks

» At create_task, a new task is created
» At wait_tasks, the parent waits for
children to complete

AQ{
S1;
create_task(B);
S2;
wait_tasks;
S3;

}

child ends - P e parent stops
by wait_tasks

----- parent resumes

13/29

Computation DAG trace

Two basic operations:
create_task and wait_tasks

> At create_task, a new task is created
» At wait_tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which

> nodes: are serial code segments
separated by task parallel primitives

> edges: represent these task parallel
primitives

AQOA{
S1;
create_task(B);

S2; e i
wait_tasks; Fask A is divided
- into 3 nodes
S3;

}

—»., create_task

<_\,‘: wait_tasks

13 /29

Computation DAG trace

Two basic operations:
create_task and wait_tasks

AQ0{

51; recording timestamps

> At create_task, a new task is created
» At wait_tasks, the parent waits for create_task(B;)

children to complete s2:

it tasks;
A task parallel program run can be wart tasks

modeled as a directed acyclic graph }53:
(computation DAG) in which

> nodes: are serial code segments
separated by task parallel primitives

time

> edges: represent these task parallel
primitives

Computation DAG trace

Two basic operations:
create_task and wait_tasks

> At create_task, a new task is created
» At wait_tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which

> nodes: are serial code segments
separated by task parallel primitives

> edges: represent these task parallel
primitives

AQ0{

51; recording timestamps

to;
create_task(t;; B; t,;);
ts;
S2;

. ts
wait_tasks; B
S3;
} t;
time

Computation DAG trace

Two basic operations:
create_task and wait_tasks

> At create_task, a new task is created
» At wait_tasks, the parent waits for
children to complete

A task parallel program run can be
modeled as a directed acyclic graph
(computation DAG) in which

> nodes: are serial code segments
separated by task parallel primitives

> edges: represent these task parallel
primitives

AQ0{

51; recording timestamps

to;
create_task(t;; B; t,;);
ts;
S2;

ty; t €
wait_tasks; * t,
ts;
S3;
} t;
time

13 /29

Our performance toolset includes 3 parts:
» tpswitch: a portable wrapper around different task APIs
» DAG Recorder: a tracer that captures computation DAG
» DAGViz: a visualization and analysis tool for computation DAG

14/29

p
1| /* tpswitch.h */

2

3| /* To Cilk Plus */

4 | #define create_task(st)
5 | #define wait_tasks

6

7| /* To OpenMP */

8 | #define create_task(st)
9 | #define wait_tasks

10

11 | /* To TBB */

12 | #define create_task(st)
13 | #define wait_tasks

tpswitch

cilk_spawn(st)
cilk_sync

pragma_omp_task(,st)
pragma_omp_taskwait

__tg__.run_([=]{st;})
__tg__.wait_Q)

two generic primitives translate to
equivalent ones in specific systems
with measurement probes.

#include <tpswitch/tpswitch.h>

int fib(int n) {
if (n < 2) return n;
int x, y;
create_task({x = fib(n-1);});
y = fib(n-2);
wait_tasks();
return x + y;

" TBB
Cilk PI
! us OpenMP (MassiveThreads, Qthreads)

#include <cilk/cilk.h>

int fib(int n) {
if (n < 2) return n;
int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);
cilk_sync;
return x + vy;

#include <omp.h> #include <tbb/task_group.h>
int fib(int n) {
if (n < 2) return n;
int x, y;
#pragma omp task
{ x = fib(n-1); }
y = fib(n-2);
#pragma omp taskwait
return x + y;

int fib(int n) {
if (n < 2) return n;
int x, y;
thb::task_group tg;
tg.run([&]{x = fib(n-1);});
y = fib(n-2);
tg.wait();
return x + y;

© ® N LA W N~

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);
} else {
m = partition(A, a, b);

create_task(quicksort(A,a,m,threshold);

quicksort(A,m,b,threshold) ;

wait_tasks;

E

16/29

© ® NS LA W N~

To Cilk Plus

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);
} else {
m = partition(A, a, b);

cilk_spawn quicksort(A,a,m,threshold) ;

quicksort(A,m,b,threshold) ;

cilk_sync;

16/29

© ® N LA W N~

To Cilk Plus with DAG Recorder

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {

}

simple_sort(A, a, b);
else {
m = partition(A, a, b);

to;
cilk_spawn {f;quicksort(A,a,m,threshold);®;}
t3;

quicksort(A,m,b,threshold);
ty;

cilk_sync;

t5;

DAG captured by DAG
Recorder

16/29

© ® N LA W N~

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);
} else {
m = partition(A, a, b);

create_task(quicksort(A,a,m,threshold);

quicksort(A,m,b,threshold) ;

wait_tasks;

E

16/29

© ® NS LA W N~

To OpenMP

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);
} else {
m = partition(A, a, b);

#pragma omp task
quicksort(A,a,m,threshold);

#pragma omp task
quicksort(A,m,b,threshold) ;

#pragma omp taskwait

b
}

16/29

© ® N LA W N~

To OpenMP with DAG Recorder

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);

} else {
m = partition(A, a, b);
to;

#pragma omp task
{t1;quicksort(A,a,m,threshold);;}
t3;
#pragma omp task
quicksort(A,m,b,threshold);
ty;
#pragma omp taskwait
t5;

DAG captured by DAG
Recorder

16/29

© ® N LA W N~

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);
} else {
m = partition(A, a, b);

create_task(quicksort(A,a,m,threshold);

quicksort(A,m,b,threshold) ;

wait_tasks;

E

16/29

© ® NS LA W N~

To TBB

void quicksort(A, a, b, threshold) {
if (b - a <= threshold) {
simple_sort(A, a, b);
} else {
m = partition(A, a, b);
tbb::task_group tg;

tg.run([&]{ quicksort(A,a,m,threshold);

quicksort(A,m,b,threshold) ;

tg.wait();

s

16/29

© ® N LA W N~

To TBB with DAG Recorder

void quicksort(A, a, b, threshold) {

if (b - a <= threshold) {
simple_sort(A, a, b);

} else {
m = partition(A, a, b);
tbb::task_group tg;
to;
tg.run([&]{ f; quicksort(A,a,m,threshold); »; });
t3;

quicksort(A,m,b,threshold);
ty;

tg.wait();

t5;

DAG captured by DAG
Recorder

16/29

©® NS N W N

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.
» leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

f(n) {
S1;
create_task(f(n-1));
£f(n-2);
S2;
wait_tasks;
S3;

17/29

©® NS N W N

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

» leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

f(n) {
S1;
create_task(f(n-1));
£f(n-2);
S2;
wait_tasks;
S3;

17/29

©® NS N W N

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

» leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

f(n) {
S1;
create_task(f(n-1));
£f(n-2);
S2;
wait_tasks;
S3;

17/29

DAG Recorder

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;
wait_tasks;
S3H

©® NS N W N

17 /29

DAG Recorder

©® NS N W N

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;
wait_tasks;
S3H

.dag file

DAG Recorder

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;

wait_tasks;

S3; ‘"’<>|

©® NS N W N

} O .dag file

DAG Recorder

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;

wait_tasks;
S3H

LOALIV]

©® NS N W N

.dag file

DAG Recorder

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;
wait_tasks;
S3H

©® NS N W N

17 /29

DAG Recorder

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;
wait_tasks;
S3H

©® NS N W N

17 /29

DAG Recorder

» DAG Recorder constructs the pointer-based hierarchical DAG in
memory during the program run.

> leaf nodes: create, wait, end
» internal nodes: section (synchronization scope inside a task), task

» DAG Recorder flattens the DAG to file when the program finishes.

f(n) {
S1;
create_task(f(n-1));
f(n-2);
S2;
wait_tasks;
S3H

©® NS N W N

17 /29

On-the-fly DAG contraction

» One challenge: storing every task in a fine-grained program
consumes large memory
» Solution: collapse “uninteresting” subgraphs (e.g., executed solely
by a single worker) into single nodes
» still retain aggregate performance information of removed topology
(e.g., total work, critical path)
> memory overhead now scales with steals across workers rather than
task creations

On-the-fly DAG contraction

» One challenge: storing every task in a fine-grained program
consumes large memory
» Solution: collapse “uninteresting” subgraphs (e.g., executed solely
by a single worker) into single nodes
» still retain aggregate performance information of removed topology
(e.g., total work, critical path)
> memory overhead now scales with steals across workers rather than
task creations

On-the-fly DAG contraction

» One challenge: storing every task in a fine-grained program
consumes large memory
» Solution: collapse “uninteresting” subgraphs (e.g., executed solely
by a single worker) into single nodes
» still retain aggregate performance information of removed topology
(e.g., total work, critical path)
> memory overhead now scales with steals across workers rather than
task creations

DAGViz

» DAGViz reads DAG from file and re-constructs its hierarchical
structure in memory to visualize

» One challenge: a (collapsed) DAG may still be very large, taking
long time to load and render

» Solution: DAGViz deploys on-demand hierarchical expansion

1 the DAG is expanded on demand in a top-down manner
2 only expanded branch of the DAG is loaded and rendered

-dag file not loaded part

19/29

20/29

DAGViz's GUI and visualizations

DAGViz currently has two GUI versions based on
two popular GUI toolkits: = = | T
» C-based GTK+: GUI, rendering, and logics are ‘.: ||

written in C ! :
» C++ and Python-based Qt5: GUI is written in ; ‘h }

Python, rendering is written in C++, logics are R e

written in C DAGViz's GUI

DAGViz provides many kinds of visualizations of the DAG:
> basic DAG
» DAG with timing on vertical axis

> timelines together with parallelism profile

parallelism
profile

time

I timelines

DAG DAG with timing on y-axis
21/29

Case studies

We have found causes of performance bottlenecks in many cases:
» SparselLU

» Cilk Plus, TBB have slow work stealing speed
» Qthreads delays child tasks deliberately

» Alignment
» OpenMP suffers from its size-limited task queue
» FFT

» OpenMP suffers from its stack-overflow-avoiding measure
> Qthreads delays child tasks deliberately

» Blackscholes
> all systems suffer from Blackscholes’ too small grain size
» Bodytrack
» all systems suffer from Bodytrack's many long serial sections

Related work

Some tools that visualize task graph (DAG) of task parallel programs are:

» ThreadScope [Wheeler and Thain 2010]: (Cilk, Qthreads, Pthreads) task graph
with memory objects

» Temanejo [Brinkmann et al. 2011]: (OmpSs) task graph with dataflow
dependencies

» Flow Graph Analyzer [Tovinkere and Voss 2014]: (TBB) task graph of TBB's
flow graph interface

» Grain graph [Muddukrishna et al. 2016]: (OpenMP) task graph of tasks and
loop chunks

ThreadScope

[Wheeler and Thain 2010]

ThreadScope uses Graphviz to visualize code regions and

accessed memory objects.

» Cilk, Qthreads, Pthreads

Graphviz [Gansner and North 2000] is
a popular graph rendering engine:

>

flatly renders all nodes & edges
at once (flat layout)

focuses on aesthetic aspects
in layouts

easily gets slow with large graphs

DAGViz is scalable with hierarchical
expansion

© O NS G A W N~

digraph G {

/* nodes */
[style=filled,shape=circle];
[style=circle,shape=rectanglel;
[style=circle,shape=square];
[style=filled,shape=circle];
[style=filled,shape=circle];

m=w0n4daq

/* edges */
C->T;
C->S;
T->E;
S->W;
W->E;

Temanejo interactively visualizes task graph with dataflow during a run of an
OmpSs program

» OmpSs = OpenMP Tasks model + Mercurium compiler + Nanos++ runtime

> only OmpSs

> flat layout (NetworkX pakage)

margin color: slcheduling state

Temanejo's online visualization of task graph with
data dependencies [Brinkmann et al. 2011]

25 /29

Flow Graph Analyzer

[Tovinkere and Voss 2014]

Flow Graph Analyzer captures and visu-
alizes task graph from program written
with FLow Graph Interface of TBB 4.0. treemap—|

> only TBB
>
flat layout timelines_|
concurrency—
An example program histogram

with Flow Graph Interface

#include ["tbb/flow_graph.h"

#include <iostream>

using namespace std;
[using namespace tbb::Elow;]

int main()
graph g;
continue_node< continue msg> hello(g,
N

[1(const continue msg &)
cout << "Hello";

N
N
)i N
continue_node< continue msg> world(g, N
[1(const continue msg &) { RN
cout << " World\n"; RIS
N -
)i =2
make_edge (hello, world); msg q finished

hello.try put (continue msg()) ; hello Wor
/

return 0;

Flow Graph Analyzer's GUI [Tovinkere and Voss 2014]
statistics

26 /29

Grain graph captures and visualizes a graph of execution intervals of tasks and
loop chunks (grains) from a run of an OpenMP program.

> only OpenMP

> flat layout

> non-interactive visualization (igraph package)

kdtree's grain graph [Muddukrishna et al. 2016]

27 /29

Publications

> A. Huynh, K. Taura, “Delay Spotter: A Tool for Spotting Scheduler-Caused Delays in
Task Parallel Runtime Systems”, |IEEE International Conference on Cluster Computing
(CLUSTER '17)

AT

power-scaled . linear-scaled
one zoomed-in spot

> A. Huynh, D. Thain, M. Pericas, K. Taura, “DAGViz: A DAG Visualization Tool for
Analyzing Task-Parallel Program Traces”, International Workshop on Visual
Performance Analysis, held in conjunction with SC15 (VPA '15)

hierarchical expansion of DAG nodes DAGViz's GUI .

Conclusion

» DAGViz—a task-centric performance toolset for task parallel programs and
schedulers:
logical task structure
scalable measurement (with DAG contraction)
scalable rendering (with on-demand hierarchical expansion)
» With a distinct focus on task schedulers, we hope DAGViz toolset to be a
good addition to the existing large set of parallel performance tools.

» Future work:

» to extend to distributed-memory systems
» to analyze task locality with computation DAG

29/29

Conclusion

» DAGViz—a task-centric performance toolset for task parallel programs and
schedulers:
logical task structure
scalable measurement (with DAG contraction)
scalable rendering (with on-demand hierarchical expansion)
» With a distinct focus on task schedulers, we hope DAGViz toolset to be a
good addition to the existing large set of parallel performance tools.

» Future work:

» to extend to distributed-memory systems
» to analyze task locality with computation DAG

Thank you for listening!

29/29

	Introduction

