Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster

Yuta Hirokawa

Graduate School of Systems and Information Engineering, University of Tsukuba

hirokawa@hpcs.cs.tsukuba.ac.jp

Agenda

- Background
- □ ARTED and SALMON: Electron Dynamics Simulation with TDDFT
- Porting to Knights Landing
- □ Performance comparison of KNC and KNL
 - □ Single node performance: stencil computation (dominant part)
 - □ Multi node performance: time-development part (entire performance)
- Performance evaluation under full-system of Oakforest-PACS
- Summary

Background

□ Intel Xeon Phi (a.k.a. MIC, Many Integrated Core Architecture)

- Current architecture: Knights Landing (KNL)
- *Previous* architecture: Knights Corner (KNC)
- Many-core system actively operated in the world
 Intel Xeon Phi (KNL): Cori (NERSC, USA), Oakforest-PACS (JCAHPC, Japan)
 Proprietary processor: Sunway Taihulight (NSCC, China)
- Performance gain of real scientific applications on many-core processor is very difficult
 - *Optimization* is strongly requested for the applications on many-core processors

Purpose of this study

Recent supercomputers provide standalone many-core-based clusters
 To replace ordinary commodity CPU clusters (Recent Xeon is a many-core CPU)
 WHY: Achieve a high watt performance, Keep a lid on building costs...

Our code has been optimized particularly for KNC many-core

- □ Y. Hirokawa, *et. al.*: "Electron Dynamics Simulation with Time-Dependent Density Functional Theory on Large Scale Symmetric Mode Xeon Phi Cluster", *PDSEC16*
- We implement and evaluate the application to KNL based on the optimized code for KNC
 - □ The optimization for KNC strongly helps with migration to KNL clusters

ARTED and SALMON

Electron Dynamics Simulation with TDDFT

ARTED: **A**b-initio **R**eal-**T**ime **E**lectron **D**ynamics simulator SALMON: **S**calable **A**b-initio **L**ight-**M**atter simulator for **O**ptics and **N**anoscience

Electron dynamics simulation with Time-Dependent DFT

- Developed at Center for Computational Sciences (CCS), U. Tsukuba
- Collaborative research with CCS (since Dec. 2014, in the Master program)
- Available: K-computer, FX100, Xeon CPU, Xeon Phi, GPU (OpenACC + CUDA)
- 25-points stencil computation should be very optimized
- □ Written by Fortran (2003) + C (for hand-coding vectorization), MPI+OpenMP

Currently, we develop an advanced scientific application based on ARTED, names SALMON: <u>http://salmon-tddft.jp/</u>

- Open-source software: it is developed at GitHub
- □ Supported by JST-CREST and Post-K priority issue (7)
- Please contact our mailing-lists: <u>salmon-users@salmon-tddft.jp</u>

Overview

- [1] Y. Hirokawa, *et al.*: "Performance Evaluation of Large Scale Electron Dynamics Simulation under Many-core Cluster based on Knights Landing", *HPCAsia2018*, Tokyo. OA: <u>https://doi.org/10.1145/3149457.3149465</u>
- First order quantum calculation based simulation
 - Electromagnetic (Maxwell)
 - + Electron dynamics (Time-Dependent Kohn-Sham)
 - □ <u>Huge</u> wave-space, <u>Small</u> real-space 3-D grid
 - The communication is negligible (not bottleneck)
 - Please refer to the our paper for the simulation and implementation details [1]
 - 25-points stencil for the 3-D domain is dominant
 Derived is been dereven divisored and the stence of the
 - Periodic boundary condition, 158 FLOPS / grid
 - The stencil computation is not decomposition
 - **Each thread computes a 3-D domain with sequentially**
 - Single-thread/core level optimization problem

Porting to Knights Landing

Oakforest-PACS (OFP) at JCAHPC (U. Tsukuba and U. Tokyo)

Japan's 2nd supercomputer system (TOP500 Nov. 2017)

Total 8208 compute nodes Use up to 8192 nodes (Full system) Peak: 24.91 PFLOPS HPL: 13.55 PFLOPS (54.4 %) HPCG: 0.3855 PFLOPS (1.54%)

Fundamental tuning for stencil computation

real(8), intent(in) :: B(0:NLz-1,0:NLy-1,0:NLx-1)
complex(8),intent(in) :: E(0:NLz-1,0:NLy-1,0:NLx-1)
complex(8),intent(out) :: F(0:NLz-1,0:NLy-1,0:NLx-1)

Y. Hirokawa, *et. al.*: "Electron Dynamics Simulation with Time-Dependent Density Functional Theory on Large Scale Symmetric Mode Xeon Phi Cluster", *PDSEC16*, 2016

For AVX-512 processors

- We demand the conversion of KNC SIMD code into AVX-512
 - Preprocessor directive can be solved a minor difference of instructions

```
#ifdef __AVX512F__
/* Intrinsics for KNL and AVX-512 processors */
#define _mm512_loadu_epi32 __mm512_loadu_si512
#define _mm512_storenrngo_pd _mm512_stream_pd
#elif __MIC__
/* Intrinsics for KNC */
inline __m512i _mm512_loadu_epi32(int const* v)
{
   __m512i w = _mm512_loadunpacklo_epi32(w, v + 0);
   return __mm512_loadunpacklo_epi32(w, v + 16);
}
#endif
```

- Our code requires a common AVX-512F subset only (F: Foundation)
 Our implementation can be applied to all AVX-512 processor families
- **I** For the performance evaluation
 - □ KNL uses a MCDRAM only for computation

Performance comparison of KNC and KNL

Evaluation environment

1-MPI process attached to each processor

4-threads per core is fast on the Intel Xeon Phi

	COMA (U. Tsukuba)	Oakforest-PACS (JCAHPC)	
# of Node	393	8208	
CPU	Intel E5-2670v2 (Ivy-Bridge)	Intel Xeon Phi 7250 (KNL)	
	Xeon Phi 7110P (KNC)		
# of Cores / Node	20 (10 cores x2, IVB) + 120 (60 cores x2, KNC)	68 cores (Quadrant) We use 64 cores (4 cores are used with OS)	
Memory / Node	64 GB (IVB, DDR3) + 8 GB x2 (KNC, GDDR5)	16 GB (MCDRAM) + 96 GB (DDR4)	
Interconnect	Mellanox InfiniBand FDR Connect-X3	Intel Omni-Path Architecture	
Compiler and MPI	Intel 16.0.2 and Intel MPI 5.1.3	Intel 17.0.1 and Intel MPI 2017 update 1	
Peak Perf. / Node	2548 GFLOPS (400 GFLOPS CPU + 2148 GFLOPS KNC)	3046 GFLOPS	

Stencil computation

Single processor performance

Entire computation

Performance evaluation under full-system of Oakforest-PACS

Distributed multi-scale simulation

Maxwell equation (Macroscopic-system)

SALMON takes two MPI distribution scheme:

1. Simple distribution

- Distribute Maxwell equation only
- Use MPI_COMM_WORLD for Maxwell eq.
- TDKS (Time-Dependent Kohn-Sham) eq. does not distributed
- Entire collective only
- 2. Two-phase distribution
 - Distribute Maxwell&TDKS equations
 - Use MPI_COMM_WORLD for Maxwell eq.
 - Use sub MPI communicator for TDKS eq.
 - Entire collective + Subgroup collective

Halo comm. does not required

17

Full-system evaluation of OFP

□ Laser-interaction problem to apply material processing with laser cutter

	Graphite (Graphene)	Silicon
Distribution scheme	Two-phase	Simple
MPI procs. / Macro-grid	8	_
Macro-grids / MPI proc.	—	1, 2, 4
Total # of macro-grid (max)	1024	32768
# of wave space	7928×16	8 ³ ×16
Size of 3-D real scape	26×16×16	16 ³
Data size / MPI proc.	(7928 ÷ 8)×16×NL ≈ 1.6 [GB]	8 ³ ×16×NL ≈ 0.5~2.0 [GB]
Actual calculation time (1 case with 8192 KNL)	5–6 hours	8–9 hours

2018/02/15

Strong scaling

Why degraded performance

Blue box shows the computation-only part

- L. Communication does not included
- 2. Problem size per node is even
- Graphite case uses two-phase distribution
 Requires two-phase synchronization in both <u>sub MPI communicator</u> and <u>all MPI processes</u>

□ It is sensitive for the load-imbalancing

Non-algorithmic load-imbalancing
 Intel Turbo Boost mechanism

Conclusion

We implemented and evaluated the application on many-core system
 To Intel Knights Landing from Intel Knights Corner

- □ 25-point stencil computation
 - \square KNL is 2.5x faster than that of a KNC
- □ Time-development part
 - Performance: 1-KNL > 2-KNC
- Full-system evaluation of Oakforest-PACS
 Our code is scalable on world-class KNL many-core system
 - □ Future work: solve load-imbalancing problem between compute nodes

Current: we develop a SALMON towards "Post-K" and beyond