
Prov iden t ia Wor ldw ide

DESIGN PATTERNS AND APPLICATIONS FOR ACCELERATION

HPC IN THE HYPERSCALE ENTERPRISE:

S. Ryan Quick
Principal and Co-Founder

@phaedo

Prov iden t ia Wor ldw ide

IRU4

IRU3

IRU2

IRU1

A1

A2

A3

A5

A7

A4

A6

A8

2

2
2

2

4

4

4

4

1A

2B

1B

2A

Storage Array Cabling

1D Cabling (onboard)

2D Cabling

3D Cabling

Babar Cluster Hypercube Interconnect

IRU3IRU1

A9

A
A

A
B

A
C

2

2
2

2

4

4

3B3A

Prov iden t ia Wor ldw ide

“Purpose Of The Institute”
The Accelerated Data Analytics and Computing Institute
has been established to explore potential future
collaboration among UT-Battelle, LLC (UT-Battelle), the
Swiss Federal Institute of Technology, Zurich
(Eidgenössische Technische Hochschule Zürich/ ETH
Zurich), and Tokyo Institute of Technology (Tokyo Tech).
Consistent with their respective missions, the
Participants seek to collaborate and leverage
their respective investments in application
software readiness in order to expand the
breadth of applications capable of running on
accelerated architectures. All three organizations
manage HPC centers that run large, GPU-accelerated
supercomputers and provide key HPC capabilities to
academia, government, and industry to solve many of
the world’s most complex and pressing scientific
problems.

“We take technological artifacts
to be points at which the theory-
making efforts of different groups
overlap, intersect, and interact.”

“

- Genevieve Bell, Intel @feraldata

Case 1: Map-Reduce To Shared Memory Scaleup
“Our hadoop job gets OOM-killed a"er day 6!’

•Map-reduce well suited for finding smaller-than-haystack
needles in many haystacks (where a haystack is easily divisible
amongst machines)

•Combination jobs (where the “reduce” is larger than the map)
work against the core design and so must be severely
segmented or risk OOM — segmentation works, but requires
application-level reassembly (“Humpty Dumpty” Problem)

•Data originates elsewhere and the results are needed
somewhere else (always part of larger workflow(s))

Prov iden t ia Wor ldw ide

KNN, Decision Forest
56,000 dimensions

3M msgs/sec

Application Component to Service Node Mapping

Case 1: Map-Reduce To Shared Memory Scaleup
HPC Acceleration: “Big Small Soldiers”

• Leverage large shared memory scaling for “reduce” operations
• RDMA to alleviate the implications of required data copies.
• Optimize data IO so mappers and reducers avoid internal copying

• accelerate initial loading and “scratch IO” using memory
filesystems

• Generally: memfs > parallel fs > Object Store > HDFS/NFS/CIFS
• For ML, classification, similarity workloads, compute acceleration

(GPU, DSP, TPU) are possible, but frameworks are limited
• Need Java/Scala, Python, Go, Swift, etc as first class citizens.
• Some progress from the DL world, but only for small set of

problems.

Prov iden t ia Wor ldw ide

Prov iden t ia Wor ldw ide

• SoA is common: components are always externalized and
optimized independently. (HA + Scale)

• Messaging assumed for coordination, data movement and
routing, schema independence, pub/sub scaling, etc.

• Acceleration opportunities abound, but usually the TTM
for a feature will win over performance, so we need a
performant functional programming system. (Deep
Learning is ahead here, but doesn’t work for all problems)

• Event ordering is not important here. General workflow
sequence is good enough…

Case 2: “Files of Interest”
Multi-component, services-based Workflow
with a variety of learning methods, pattern
recognition, and messaging

“Files of Interest”
HPC Acceleration: ML, DL, Pattern Recognition, Event Streaming

Given an organized structure of files
• determine groups of similar files, without opening the

file itself
• classify a statistically relevant sample of each group to

confirm validity of grouping
• at regular intervals, scan for patterns of interest

against all files, using class-specific patterns
• send event notifications to command and control

systems when patterns of interest are detected,
including enough insight for those systems to handle
the event

Prov iden t ia Wor ldw ide

“Files of Interest”
HPC Acceleration: ML, DL, Pattern Recognition, Event Streaming

Technology Components:
• Messaging Middleware
• Metadata Schema (relational)
• Metadata Relationships (graph)
• Unsupervised Learning (Clustering)
• Supervised Learning (Classification)
• Deep Learning (Pattern Determination)
• Pattern/Anomaly Recognition
• Event Generation

Prov iden t ia Wor ldw ide

“Files of Interest”

Prov iden t ia Wor ldw ide

HPC Acceleration: ML, DL, Pattern Recognition, Event Streaming

Case 3: Real-Time Stream Analytics
Compound Messaging Paradigms For Parallel
Source, Parallel Stream, Affinity Analytics

Prov iden t ia Wor ldw ide

• One of the best opportunities for acceleration on a variety of
resource vectors
• in-network
• in-memory
• compute
• semantics and ontology
• ordering, prioritization, delivery optimization

Complex Event Processor

CPU
Source

Zookeeper
Source

RabbitMQ
Source

Application
Event

Source

Parallel Source
Disparate

Normalization

Correlative/
Normalized

View

Correlative/
Normalized

View

Correlative/
Normalized

View

approx-data-sz
avg-latency
ephemeral-count
followers
max-fd-cnt
max-latency
min-latency
open-fd-cnt
num-alive-connections
outstanding-requests
packets-received
packets-sent
pending-syncs
synced-followers
watch-cnt
znode-cnt

Zookeeper

message total
message ready
message unasked
rate.publish
rate.deliver
rate.redeliver
rate.confirm
rate.ack
connection.total
connection.idle
channel.total
channel.publisher
channel.consumer
channel.duplex
channel.inactive
exchange.rate.phaedo
q.total
q.idle
q.messages.phaedo
q.consumers.phaedo
q.memory.phaedo
q.ingress.phaedo
q.egress.phaedo
binding.total

RabbitMQ

Simple Approaches

Aggregation
Event Statistics
Atomic Pattern Recognition

• Stream sources are combined in an aggregation
application.

• Output is derived insight based on both sources
• Use Case Example: CPU performance related to TCP

Connections
• A: CPU idle % every 30s
• B: TCP connections (incoming) [Event Driven]
• INSIGHT: TCPCONNS/IDLE %

Prov iden t ia Wor ldw ide

Source
B

Aggregator

Source
A

Insight

Messaging: Source Aggregation

Simple Approaches

Aggregation
Event Statistics
Atomic Pattern Recognition

• Numerical/Categorial calculations based on data
contained within the source datum/event

• Output insight effectively introduces new sources,
generally numerical/gauged.

• Use Case Example: Watched-Files-Per-Active-Consumer
output as new stream source
• INSIGHT: watch-cnt (value per event) * synced-followers

(value per event)

Prov iden t ia Wor ldw ide

Metrics Calculator

Zookeeper
Source

Events/sec

approx-data-sz
avg-latency
ephemeral-count
followers
max-fd-cnt
max-latency
min-latency
open-fd-cnt
num-alive-connections
outstanding-requests
packets-received
packets-sent
pending-syncs
synced-followers
watch-cnt
znode-cnt

Zookeeper

followers/
pending-sync

(open-fd / znode-cnt)/
num-alive-conns

watch-cnt *
followers

Messaging: Event Statistics Calculations

Simple Approaches
Messaging: Multi-Source Atomic
Pattern Recognition

Aggregation
Event Statistics
Atomic Pattern Recognition

• Simple thresholds within the event itself
• Correlation can be within a single source, or across

disparate sources
• Represented as “waterfalling” but this depends on

frequency and is really just easier for us to read, the
operations are parallel and stateless (in this approach)

• Use Case Example: Output Potential-Login-Attack events

Prov iden t ia Wor ldw ide

Metrics Calculator

CPU
Event

Source

app login r/sec
app successful login r/sec
app failed login r/sec
cpu 1m load avg
cpu 5m load avg
cpu 15m load avg
cpu blocked proc cnt
cpu running proc cnt
cpu waiting proc cnt
cpu user %
cpu idle %
cpu system %
cpu io wait %
db active queries
db slow queries
db selects
db updates
db deletes
db rows fetched
db table locks held
db row locks held

Available Source Fields App
Login
Event

Source

DB
Access
Event

Source

> 3?

app failed login /
app success
login * 100

AVG(cpu waiting /
cpu running)) / cpu
1M load avg * 100

> 0.5? DB Slow
Queries

> 4?

Anomaly Detected:
Potential Login

Attack

ye
s

ye
s

yes

Compound Approaches
Messaging: Affinity Source Collection

Affinity + Simple Case
Stream + Augmented Datasource
Parallel Stream
Frequency-Shifted Stream

• Given parallel publishers for single source schemas, affinity
refers to collating events by
• publisher
• schema
• both

• Can be implemented automatically based on other simple cases
• Use Case Example: “Person of Interest”, “Behavior of Interest”

• Collate data by publisher once an anomalous event is
triggered by a simple approach

• Collate all like-schema sources to watch “pool behavior”

Prov iden t ia Wor ldw ide

Metrics Calculator

Zookeeper
Source

Zookeeper
Source
Zookeeper

Source
Zookeeper

Source
Zookeeper

Source
Zookeeper

Source

Aggregated
Collector

Affinity Collectors

Parallel Source/
Normalized Stream

Compound Approaches
Messaging: Parallel Source And
Datasource Augmentation
Affinity + Simple Case
Stream + Augmented Datasource
Parallel Stream
Frequency-Shifted Stream

• Source data is augmented by
• additional sources (alternate schema)
• additional data sources (RDBMS, GraphDB, KV, Cache, etc)

• Used in cases where information on the wire requires additional
context, culling, augmentation to provide insight

• Use Case Example: Network Detection
• Event Source provides transaction details, network actors
• RDBMS provides known-network attributes
• Graph DB provides existing actor-network
• Aggregator determines similarity score that the current event

is a particular network type
Prov iden t ia Wor ldw ide

Source
B

Aggregator

Source
A

Insight

Compound Approaches
Messaging: Multi-Source, Multi-Stream
(Stream Tensor Normalization)
Affinity + Simple Case
Stream + Augmented Datasource
Parallel Stream
Frequency-Shifted Stream

• “Correlative/Normalized View”: Similar to a SQL “join”
concept, we relate data fields in disparate stream sources

• Requires frequency mapping (sliding windows, state
management, etc.)

• Use Case Example: Messaging System and Zookeeper
filesystem relationships
• vector time (event/observation based)
• incoming/outgoing pipeline relationships
• actor mapping
• filesystem/messaging performance

Prov iden t ia Wor ldw ide

Complex Event Processor

CPU
Source

Zookeeper
Source

RabbitMQ
Source

Application
Event

Source

Parallel Source
Disparate

Normalization

Correlative/
Normalized

View

Correlative/
Normalized

View

Correlative/
Normalized

View

approx-data-sz
avg-latency
ephemeral-count
followers
max-fd-cnt
max-latency
min-latency
open-fd-cnt
num-alive-connections
outstanding-requests
packets-received
packets-sent
pending-syncs
synced-followers
watch-cnt
znode-cnt

Zookeeper

message total
message ready
message unasked
rate.publish
rate.deliver
rate.redeliver
rate.confirm
rate.ack
connection.total
connection.idle
channel.total
channel.publisher
channel.consumer
channel.duplex
channel.inactive
exchange.rate.phaedo
q.total
q.idle
q.messages.phaedo
q.consumers.phaedo
q.memory.phaedo
q.ingress.phaedo
q.egress.phaedo
binding.total

RabbitMQ

Compound Approaches
Messaging: Frequency-Shi"ing And Ordering

Affinity + Simple Case
Stream + Augmented Datasource
Parallel Stream
Frequency-Shifted Stream

• Not a simple problem, and is usually where the “it’s easier to just
do this in situ” argument comes up.

• Most sources do not publish at the same interval. To handle this
we need a variety of techniques (some examples):
• sliding time windows
• state management (value looping)
• relevancy-offset clocks (determined by “master events”)
• store and forward

• Use Case Example: Application Environmental CPU Impact
• CPU published on time interval, leverage value looping
• Application is event-driven, it’s the master.

Prov iden t ia Wor ldw ide

Complex Event Processor

CPU
Source

Zookeeper
Source

RabbitMQ
Source

Application
Event

Source

Parallel Source
Disparate Frequency

Sliding Time Window

event_duration_ms
event_timestamp_orig
observed_timestamp
observation_latency

ApplicationRabbitMQ
event_duration_ms
event_timestamp_orig
observed_timestamp
observation_latency

Zookeeper
event_duration_ms
event_timestamp_orig
observed_timestamp
observation_latency

event_duration_ms
event_timestamp_orig
observed_timestamp
observation_latency

CPU

“Centralized Messaging”

Prov iden t ia Wor ldw ide

Datacenter

Private
Cloud

Public
Cloud

Third
Party

Messaging Node A

Messaging Node B

Messaging Node C

Messaging Node D

200+ Gbs
Ethernet for datacenter
interchange connectivity

800+Gbs
Infiniband connectivity

for internal communications
+ RDMA

+ Shared Memory
+ 3 Tiers of Persistence (see inset)

Prov iden t ia Wor ldw ide

Hyperscale Acceleration Opportunities

HPC and Hyperscale will merge, now is the time to optimize and accelerate. But
we accelerate the best of what they already do, not force paradigm change

Machine/Deep Learning

Microservices & SOA

Crypto / Hashing
Operations

Messaging Middleware and
Event Streams

Pattern Recognition,
Classification

Prov iden t ia Wor ldw ide

@providentia_ww solutions@providentiaworldwide.com

Questions?

