ing Mac

”r|
g
e

1
|

o Institu
itute for Comp td

J

\
/

vanced Inst

+—
|
Q.
£
o
O
s
o
Y—
<
2
e
L=/
O
i)
v
v
<
=

A o

00000000




TSUBAMEZ2.0 Nov. 1, 2010

1€ CCI1€C JU L olf 1DC JITIPULE .
« GPU-centric (> 4000) high performance & low power 2%’?;‘::28)
* High bandwidth memory, optical network, SSD storage... 34 Nehalem "Fat Memory" Nodes

Rack
TSUBAME 2.0 (8 Node Chassis)
New Development

Node Chassis

g%l’;lgugee';lgde (4 Compute Nodes)
Chip A SUBEWIE?.5
(CPU ,GPU) 5 7 p o 3
' . SO DS
(intel) <=3 | |
NVIDIA i

2.4 PFLOPS

\\\' 4251 GPUs
A A s 6.7 TFLOPS 53.6 TFLOPS 600TBIS Merm BW
, I R : 220 GB/412 GB 1.7 TB/3.2 TB 220Tbps NW
55 GB/103 GB ps
CPU(Westmere EP) GPUs(Tesla M2050) ~400GB/s Mem W >1.6TB/s Mem BW >12TB/s Mem BW Bisecion BW
76.8 GFLOPS 515 GFLOPS 80Gbps NW BW 35KW Max 1.4AMW Max

g2am  3GB  40nm ~1KW max Integrated by NEC Corporation




Comparing K Computer to TSUBAME 2.5

lﬂ %EI%K# !2 p ﬁ;ﬁ:n‘ﬂ‘u:/:r*n‘f‘l."'fwrﬁm;ﬁ:- o
GSIC o il FLBL AW 7E PG

Tokyo Institute of Technology

RIK=N RIKEN Advanced Institute for Computational Science

K Computer (2011)
11.4 Petaflops SFP/DFP

17.1 Petaflops SFP l 51‘.‘00”"' 6 years
5.76 Petaflops DFP BG/Q Sequoia (2011) (incl. power)

22 Petaflops SFP/DFP x30 TSUBAME?2

$45mil / 6 years (incl. power)



Tsubame current & future plans

TSUBAME 2.5 (Production) Sep. 2013 — Mar 2019 (and beyond)
— TSUBAME2.0 Nov. 2010-Sep. 2013, upgrade M2050 GPU -> K20X
— 1424 nodes / 4224 GPUs, to be reduced to ~1300 nodes upon TSUBAME3 deployment
— 5.7Petaflops (DFP), 17.1Petaflops (SFP)

TSUBAME-KFC/DL (experimental, T3 Proto) — Oct 2013 — (Sep 2018 and beyond)
— Upgrade to KFC/DL Oct. 2015 K20X GPU -> K80 GPU
— 42 nodes / 336 GPU chips, 0.5/1.5 PF DFP/SFP
— Oil immersion, ambient cooling, PUE < 1.09

TSUBAME 3.0 (Production) Aug 2017 ~2021 (and beyond) — Bid opens Jan 30t

— 12~15 Petaflops DFP depending on who wins
— Parallel production to TSUBAME2.5
— Focus on BD / Al workloads, not just traditional HPC => ~100PF max for Al combined with 2.5

New IDC space construction for Tsubame3 and staggered operations beyond (T3+T4)

— Power (AMW) + ambient cooling + storage (up to 100PB HDD) + high floor load (> 1 Ton / m”2)
— To be completed March 2017
— Power/Energy minimization for joint op in development



TSUBAME-KFC/DL: TSUBAME3 Prototype [ICPADS2014]

Oil Immersive Cooling+ Hot Water Cooling + High Density Packaging + Fine-
Grained Power Monitoring and Control, upgrade to /DL Oct. 2015

.&"\\\%‘ « High T_emperature Cooling Cooling Tower:

== Oil Lkoop 35~45°C Water 25~35°C

= Water Loop 25~35°C = To Ambient Air
| Eraid O

(c.f. TSUBAMEZ: Yl L

P E | Sl

— *GREEN

1 Density Oil el 50Q
— =l 20134E11 F /201446
Word #1 fir'eenSOO

@

Container Facility
20 feet container (16m?)
Fully Unmanned Operation




2017 Q2 TSUBAME3.0 Leading Machine Towards Exa & Big Data

1.“Everybody’s Supercomputer” - High Performance (12~24 DP Petaflops, 125~325TB/s Mem,
55~185Tbit/s NW), innovative high cost/performance packaging & design, in mere 180m?...

2.“Extreme Green” — ~10GFlops/W power-efficient architecture, system-wide power control,

advanced cooling, future energy reservoir load leveling & energy recovery T | THT Kl
g Bl Bl ug B
3.“Big Data Convergence” — Extreme high BW &capacity, deep memory k| : IEI I | M
hierarchy, extreme 1/0 acceleration, Big Data SW Stack 2013 Sem WES Ses O =
for machine learning, graph processing, ... TSUBAME?2.5 H H H ﬂ
" . ) ) upgrade i B
4.“Cloud SC” - c.iynamlc deplpymer!t, con.talner-based 5 7PF DEP 2016 TSUBAME3.042 5
node co-location & dynamic conflguratlon, resource /17.1PF SFP ~20PF(DFP) 4~5PB/s Mem BW

20% power 10GFlops/W power efficiency

elasticity, assimilation of public clouds...
reduction

. ) Big Data & Cloud Convergence
5.“Transparency” - full monitoring & J J
P Yy g

user visibility of machine
& job state,
accountability

via reproducibility

2010 TSUBAMEZ2.0
2.4 Petaflops #4 World
“Greenest Production SC”

2.06 TSUB,A:MEl_O = - # Large Scale Slmulatlon
80 Teraflops, #1 Asia #7 World 2013 TSUBAME-KFC Big Data Analytics

“Everybody’s Supercomputer” 2011ACMG #1 Green 500 Industrial Apps



http://www.new.facebook.com/album.php?profile&id=20531316728
http://www.new.facebook.com/album.php?profile&id=20531316728

TSUBAME3 (some proposals) Bid open Jan 30th

* Extremely efficient power, FLOPS/W > 10 GFlops /W
* Extremely efficient cooling, PUE = 1.03 (annual avg), hot water cooling
* NVIDIA Pascal GPU accelerated architecture — TSUBAME?2 Heritage

* Rich system interconnect BW — Intel Omipath, 1-to-1 GPU-to-HCA
injection BW

* Rich accelerated I/O hierarchy — High Cap. / BW local NVMe on every
node, aggregatable into single namespace via BeeGFS, staging from Lustre

* Up to 1 Petabyte capacity
* No Burst Buffer but exploits local storage to match performance much cheaper

 Full container based management for resource provisioning, isolation and
execution environment control of accelerated systems

* Accelerated BD/AI/ML Software stack (partially) converged with HPC
e Future 100 Petabyte object store capacity extensions



JST-CREST “Extreme Big Data” Project (2013-2018)
Future Non- $l|0 Extreme Big

Data Scientific Apps

Ul’rr'a Lar‘ge Scale
Graphs and Social
Infrastructures

Massive Sensors and
Data Assimilation in
Wea‘rher' Prediction

Lar'ge Scale
Metagenomics

Given a top-class Issues regading

Co-DesRy g[b Architectural
supercomputer, e /
p p g BD Bag EBD SYSTem Software a/gorlthmic and
how fast can we &% ’

K& incl. EBD Object System
OCCEIerate next Graph Store :

generation big
data c.f. Clouds?

system software
evolution?

Conver'gent Achlctur'e (Phases 1~4) Use of GPUs?
Lar'ge Capac:ty NVM, High-Bisection NW
Cloud IDC g

P — - W Supercomputers
Very low BW & Efficiency iy = Compute&Batch-Oriented

Highly available, resilient More fragile
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The Graph500 - 201572016 — 4 Consecutive world #1
K Computer #1 Tokyo Tech[EBD CREST] Univ. Kyushu [Fujisawa
Graph CREST], Riken AICS, Fujitsu NV

73% total exec 660,000 CPU Core

~ 1500 = Communi--—  time wait in 1.3 Petabyte mem x PP
2 = Computati-}  communication 20GB/s Tofu NW ., ¥ .,
: 1000 j’—
E
F 500 —
o
@
g #
R
L 64 nodes 65536 nodes
(Scale 30) (Scale 40) N4 E;r;glérll:ance c.f.
*Problem size is  LLNL-IBM Sequoia TajhyLight
ITETN TN NEEON SR weak scaling 1.6 millon CPUS 19/ million cpUs
November 2013 4 5524.12 Top-down o “Brain-class” graph 1.6 Petabyte mem 1 3 petabyte mem
June 2014 1 17977.05 Efficient hybrid v
November 2014 2 Efficient hybrid
June, Nov 2015 1 38621.4 Hybrid + Node

June Nov 2016 Compression




K-computer No.1 on Graph500: 4" Consecutive Time

* What is Graph500 Benchmark?

* Supercomputer benchmark for data intensive applications.
* Rank supercomputers by the performance of Breadth-First Search for very huge

45000
= 40000
i
{2 35000
~ 30000
(5}
€ 25000
5 20000
& 15000
a.
10000
5000

graph data.

—-K computer (Japan)

Sequoia (U.S.A.)

Sunway TaihulLight (China)

.

Jun 2013 Nov
2013

Jun 2012 Nov
2012

Jun 2014 Nov
2014

Jul 2015

» u
Nov Jun 2016
2015

This is achieved by a combination
of high machine performance and
our software optimization.

» Efficient Sparse Matrix Representation with
Bitmap

* Vertex Reordering for Bitmap Optimization
* Optimizing Inter-Node Communications
* Load Balancing

etc.

e Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi Matsuoka, "Efficient Breadth-First Search on
Massively Parallel and Distributed Memory Machines", in proceedings of 2016 IEEE International Conference on Big Data (IEEE
BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



Towards a Distributed Large—Scale Dynamic Graph Data Store

Goal: to develop the data store for large—scale
dynamic graph analysis on supercomputers

Comp.
Node

Comp.
Node

Comp.
Node

Streaming edges

Dynamic Graph Application

Dynamic Graph Construction (on—memory)

Node Level Dynamic Graph Data Store

Follows an adjacency-list format and leverages an
open address hashing to construct its tables

Mid-high degree table
vl | v4

v2 | v3
w1 | w2 | Edge-list
Vertex table vi [ v3
w5 [ wb
Low-degree table (degree: 1~2)
{v2,v4} | {v3,v4}

w3 w4

J

Y
Extend for multi—-processes using an async
MPI communication framework

Against STINGER (single—node)

STINGER

* A state—of—the—art dynamic graph processing
framework developed at Georgia Tech

Baseline model

* A naive implementation using Boost library (C++) and
the MPI communication framework

E Baseline DegAwareRHH 212x
o
= 200 ’
=
()
a 0 — — —
wn 6 12 24
Parallels
Multi-node Experiment
e—e Baseline
éog 236 o :DegAV\:/areRHH ‘ > .
P R 2b||||on-"“
o0 ; f
o 15 """""" a InSGFtIOI'IS' 8]
§w
O oosf e
o | | | | | | |
Q : : : : : : |
§ 00 —=20 20 60 80 100 120 140
C

Number of Nodes (24 processes per node)

K. Iwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and S. Matsuoka, Towards a distributed large-scale dynamic graph data store. In 2016
IEEE Interna- tional Parallel and Distributed Processing Symposium Workshops (IPDPSW)



Large—scale Graph Colouring (vertex coloring) SC’16

Color each vertices with the minimal #colours so that no two adjacent

vertices have the same colour
Compare our dynamic graph colouring algorithm on

1. two static algorithms including GraphLab
2. an another graph store implementation with same dynamic algorithm (Dynamic—MAP)

against:

1024

512
L |
3
o 256
1%
S \
oo 128
o \
-
el
~ 64
-
g 32
o
'—

16
8 ) 1 1 1 1 )
1 2 4 8 16 32 64
Nodes
eli==GraphLab sses=Hash l=@=Dynamic-DARHH =é=Dynamic-MAP
Static colouring Our DegAwareRHH Baseline

Scott Sallinen, Keita Iwabuchi, Roger Pearce, Maya Gokhale, Matei Ripeanu, “Graph Coloring as a Challenge Problem for Dynamic 13

Graph Processing on Distributed Systems”, SC’ 16



Incremental Graph Community Detection

* Background

 Community detection for large-scale time-evolving and dynamic
graphs has been one of important research problems in graph
computing.

* It is time-wasting to compute communities entire graphs every time
from scratch.

* Proposal

* An incremental community detection algorithm based on core
procedures in a state-of-the-art community detection algorithm
named DEMON.

* Ego Minus Ego, Label Propagation and Merge

Added vertex
Update Tt

o graph C
t= _—

T
original graph G Updated graph G’

EgoMinusEgo(v,, G’) @ &’
—“G_I'Q-ﬁ;h‘ verex .
Added vertex

ddddddd

EgoMinuéEgo( vy, GY)

EgoMinusEgo(v, G')

Hiroki Kanezashi and Toyotaro Suzumura, An Incremental Local-First Community Detection
Method for Dynamic Graphs, Third International Workshop on High Performance Big Graph
Data Management, Analysis, and Mining (BigGraphs 2016), to appear

Elapsed Time (s)

120
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80
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o}

Congress Data

101.0x
faster

e=0.25 €=0.50 e=0.75  e=0.25 =050 =075
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IMDb Data
600
500
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= 400 101.5x
=
=
300
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2 200
[}
100
o — — —
£=0.25  £=0.50 €=0.75 £=0.25 £=0.50 &=0.75
Original Incremen tal
mAdd 479.48 502.298 494.659 0.938 0.03 0.031
M Base 4978 4.913 5.047 4.9 4.968 4.89
Amazon Data
4500
4000
E 3500 69 2
2 3000 2ZX
= 2500
i=
2 2000 faster
&
& 1500
“ 1000
500

0
e=0.25  e=0.50 e=0.75 £=0.25  £=0.50 £=0.75
Original Incremen tal
EAdd 3666.41 3900.43 3731.25 9.4371 0.1962 0.2047

HmBase 35.499 37.276 36.871 44.057 36.367 42.175




GPU-based Distributed Sorting =D Agorfhin Keme's
[Shamoto, IEEE BigData 2014, IEEE Trans. Big Data 2015]

* Sorting: Kernel algorithm for various EBD processing
SN S

* Fast sorting methods \_/*i

— Distributed Sorting: Sorting for distributed system
e Splitter-based parallel sort

e Radix sort
* Merge sort

— Sorting on heterogeneous architectures

* Many sorting algorithms are accelerated by many cores and high memory bandwidth.

e Sorting for large-scale heterogeneous systems remains unclear

* We develop and evaluate bandwidth and latency reducing GPU-based HykSort on
TSUBAME?2.5 via latency hiding

— Now preparing to release the sorting library




GPU implementation of splitter-

based sorting (HykSort)

Weak scaling performance (Grand
Challenge on TSUBAME?2.5)

— 1~1024 nodes (2 ~ 2048 GPUs)
— 2 processes per node
— Each node has 2GB 64bit integer

C.f. Yahoo/Hadoop Terasort:

0.02[TB/s]
— Including 1/O

Performance prediction

D
o
1

Keys/second(billions)

K20x

x4 faster than K20x

N
o
L

N
o
1

0

500 1000 1500 2000 0

500 1000 1500 2000

# of proccesses (2 proccesses per node)

LYo irends A A
304 & HykSort GPU + 6threads
x1.4

@

5

Z20 x3.61 ||

©

S

@

2

<10-

x389
0- |
0 500 1000 1500 2000
# of proccesses (2 proccesses per node)
© HykSort 6threads
:'F')'(V:TSO{BGPU + 6threads s PCle_#: #GB/s bandwidth
+PCle_100 of interconnect between
% PCle_200
PClo 50 CPU and GPU

Prediction of our implementation

x2.2 speedup compared to
CPU-based
implementation when the
# of PCI bandwidth

increase to 50GB/s

8.8% reduction of overall
runtime when the
accelerators work 4 times
faster than K20x



Xtr2sort. Out-of-core Sorting Acceleration
using GPU and Flash NVM [iece Bigbata2016]

How to combine deepening memory layers for future
HPC/Big Data workloads, targeting Post Moore Era?

Sample-sort-based Out-of-core Sorting Approach for Deep Memory
Hierarchy Systems w/ GPU and Flash NVM

— 1/O chunking to fit device memory capacity of GPU

— Pipeline-based Latency hiding to overlap data transfers between NVM, CPU,
and GPU using asynchronous data transfers,

e.g., cudaMemCpyAsync(), libaio 800.0

L 1 |—*— in-core-gpu
o I VAN i...|—=— in-core-cpu(72)

~
3
o

. |—v— out-of-core-gpu ;

600.0l "~ .|~ ¢- outof-core-cpu(72)+psync|]
G . | | —e— out-of-core-cpu(72)+libaio |
500,04t . |-*- xtr2sort+psync :

chunké+6 | RD | R2H | H2D | EX | D2H | Haw | WR‘

i |—e— xtr2sort

ool ST R

chunké+5 | RD | R2H | H2D | EX | D2H | H2wW WR{
chunk&+4 | RD | R2H | H2D | EX | D2H | H2W | WR

chunk&+3 | RD | R2H | H2D EX | D2H | H2W | WR

3000
chunké&2 | RD R2H | H2D EX D2H | H2W | WR s

chunk&7 | RD | R2H | H2D | EX | D2H | H2W | WR
chunké | RD | R2H | H2D | EX | D2H | H2w | WR

Throughput [ x10° records/sec]

200.0F

i
o
e
o

o
3
3 v

o
o

10°
Number of records [records]

CPU + NVM

108



Hierarchical, UseR-level and ON-demand File system(HuronFS)
(IEEE ICPADS 2016) w/LLNL

Compute Compute Compute Compute <
node 1 node2 | T node N node X
static hash +
m—— —
----- -----
=
{ Parallel File System J C HuronFS )
S’arallel File syste@

* HuronFS: dedicated dynamic instances to provide “burst buffer” for caching data

|/O requests from Compute Nodes are forwarded to HuronFS

The whole system consists of several SHFS (Sub HuronFS)
* Workload are distributed among all the SHFS using hash of file path

Each SHFS consists of a Master and several IOnodes
* Masters: controlling all IOnodes in the same SHFS and handling all I/0 requests
* |Onodes: storing actual data and transferring data with Compute Nodes

Supporting TCP/IP, Infiniband (CCl framework)
* Supporting Fuse, LD_PRELOAD



HuronFS Basic 10 Performance

Latency (us)
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Plans

* Continuing researching on auto buffer allocation

 Utilizing computation power on |IOnodes
e Data preprocessing
* Format conversion

Data preprocessing,
format conversion, etc..

I )
-

Processing

In Memory
on IOnodes

Network Network




Solving the Python Performance Proble

take legacy Fortran

N

e reuse legacy code

¢ keep battle-tested
implementations

Fortran

+ top performance
+ HPC legacy

- hard to maintain 0\

- Not used in BD/AI

Dillema

\|
o‘o(o
¢ ¢
Q(

Python

((\ + ease of programming

often used in BD/AI

+ general-purpose tools

- big runtime overhead

e Performance or ease-of-programming?

e Python for development, Fortran at runtime.

J

migrate to Python

* happens once

e semi-automatic or
automatic

e performance-critical
data is retained (via
Type Hints)

e user can easily extend

functionality

J

translate performance-

critical kernels to Fortran

¢ JIT: at runtime
e fully automatic

e original performance
is retained

e user doesn’t interact
with Fortran

NG

E 300!
=

[1] Mateusz Bysiek, Aleksandr Drozd, Satoshi Matsuoka. “Migrating Legacy Fortran to Python While Retaining Fortran-Level Performance
Through Transpilation and Type Hints”. In: Proceedings of the 6th Workshop on Python for High-Performance and Scientific Computing.
PyHPC 2016. Salt Lake City, Utah, USA. ACM, 2016, URL: http://conferences.computer.org/pyhpc/2016/papers/5220a009.pdf

101

100}

~~10-1,

Python
Python + Numba

this work (also f2py) _

0 50

100

150

Matrix size

200

DGEMM performance the same as
Fortran. 5% better than Numba. [1]
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800!
700}

W 600|

=

9 500}

X

2 200!

[/ H]

200

6%

100+

6X

original

refactored Python

this work

Migrated Miranda 10 benchmark
retains original performance. [1]


http://conferences.computer.org/pyhpc/2016/papers/5220a009.pdf

Open Source Release of EBD System
Software (install on T3/Amazon/ABCI)

 mrCUDA  ScaleGraph Python
* rCUDA extension enabling remote— * Python Extension for ScaleGraph
to—local GPU migration X10—-based Distributed Graph Library
* https://github.com/EBD- * https://github.com/EBD-
CREST/mrCUDA CREST /scalegraphpython
« GPU 3.0 * Eclipse Public License v1.0
e Co—Funded by NVIDIA e GPUSort
« CBB « GPU-based Large—scale Sort
e I/0 Burst Buffer for Inter Cloud e https://github.com/EBD-
Environment CREST/gpusort
* https://github.com/EBD- e MIT License
CREST/cbb

* Apache License 2.0 * Others in development---

e Co—funded by Amazon


https://github.com/EBD-CREST/mrCUDA
https://github.com/EBD-CREST/cbb
https://github.com/EBD-CREST/scalegraphpython
https://github.com/EBD-CREST/gpusort

Tremendous Recent Rise in Interest by the Japanese
Government on Big Data, DL, Al, and loT

Three projects and centers on Big Data and Al launched by three competing
Ministries for FY 2016 (Apr 2016-)
— MEXT — AIP (Artificial Intelligence Platform): Riken and other institutions ($~50 mil)

* A separate Post-K related Al funding as well.
— METI - AIRC (Artificial Intelligence Research Center): AIST (AIST internal budget + $~8 mil)
— MOST — Universal Communication Lab: NICT ($50~55 mil)
— S1 billion commitment on inter-ministry Al research over 10 years

However, lack of massive platform and expertise in parallel computing

c.f. Google, FB, Baidu...

— MEXT attempts to suggest use of K computer
-> community revolt “we want to use lots of GPUs like Google!”
— MEXT Vice Minister Sadayuki Tsuchiya himself visits Matsuoka at Tokyo Tech Feb 15, 2016.
* “What is GPU and why is it so good for DL/AI?”
e “Canyou and TSUBAME can contribute to the MEXT projects directly over multiple years, with appropriate funding?”
— Similar talks with METI & AIRC

* “Can TSUBAME be utilized to cover the necessary research workload at AIRC?” --- Sateshi Sekiguchi, Director of )
Informatics, AIST 2




[Source: Preferred Network Japan Inc.]

To complete the learning phase in one day _
. P:Peta
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Research on Advanced Deep Learning Applications
(Part of JST Extreme Big Data Project 2013-2018)

* Deep Learning IS HPC!

. Typical scale of training data BaiEm
* Training models — mostly dense MatVec Eraining time
» Data Access for training target data sets o OIS, kst it
* Sharing updated training parameters * Spo 0Bl 1 4ot + Daep learning + HPC
In neural networks CTR: 100 billions = Success
Projected ning d
* Goals

* Current Status
Official Collaboration w/DENSO IT Lab signed November Déﬂtso % %‘

Many companies (ex. Baidu, etc.) employ GPU-based
Cluster Architectures, similar to TSUBAME2 & KFC

Accelerate DL applications in EBD architectures ?
» Extreme-scale Parallelization, Fast Interconnects, Storage 1/0, etc.

Performance bottlenecks of multi-node parallel
DL algorithms on current HPC systems ?

Profiling based bottleneck identification and performance
modeling & optimization of a real DL application on TSUBAME

* Great result, joint paper being prepared for submission

> 100 million images, 1500 GPUs (6 Pflops) 1 week grand challenge run /O Comm

Compete w/Google, MS, Baidu etc. in ILSVRC in ImageNet with shallow network
* To fit within smaller platforms e.g. Jetson Performance Model
* Got reasonable results, about 10% accuracy with 15-layer CNN | 1 v\anr

Denso Lab continues to run workloads on TSUBAME2.5 and TSUBAME-KFC/DL
In talks with other companies, e.g. Yahoo! Japan

Applications

Feed Back




Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale

Distributed Deep Learning System on GPU Supercomputers
Background Proposal

* Inlarge-scale Asynchronous Stochastic Gradient Descent * We propose a empirical performance model for an ASGD
(ASGD), mini-batch size and gradient staleness tend to be deep learning system SPRINT which considers probability
large and unpredictable, which increase the error of trained  {istribution of mini-batch size and staleness
DNN

A Mini-batch size Staleness
Objective function £ T4 nodes Nowpaen=1 | o, Nsubbatch = 1
Mini-batch size § ° | Predicted
Staleness=0 o o j: H 16 nodes Measured
'7]21' VEl g T | i i | | i i -
W(t) i i 100 200 300 400 500 600 0 2 4 6 8 10
Twice asynchronous | Nsumbaen =11 | 7 Nsubbatch = 11
(l;pdates within i; o Predicted o : ]
gradient computation S o ] A\ : < | ’%
W(t‘l'l) ! E | \ o 1
g —_#_—'_'Z' . g | | | | _ | | I
0 100 200 300 400 50 0 2 4 6 8 10
H VEZ Staleness:z NMinibatch Measured Nstaleness
DNN parameters space} (Ngyppatch: H# of samples per one GPU iteration)

* Yosuke Oyama, Akihiro Nomura, lkuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", in proceedings of
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



Approach and Contribution

O Approach: Proposing a performance model for an ASGD deep learning system
SPRINT which considers probability distribution of mini-batch size and staleness

O Takes CNN structure and machine specifications as input
O Predicts time to sweep entire dataset (epoch time) and the distribution of the stafistics

O Contribution

O Our model predicts epoch time, average mini-batch size and staleness with 5%, 9%, 19%
error in average respectively on several supercomputers

O Our model steadily choose the fastest machine configuration that nearly meets a target
mini-batch size
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SWoPP2016 16/08/08

Performance Prediction of Future HW for CNN

O Predicts the best performance with two future architectural extensions

O FP16: precision reduction to double the peak floating point performance
O EDR IB: 4XEDR InfiniBand (100Gbps) upgrade from FDR (56Gbps)

— Not only # of nodes, but also fast interconnect is important for scalability

TSUBAME-KFC/DL ILSVRC2012 dataset deep learning
Prediction of best parameters (average minibatch size 138+25%)

_m N_Subbaich Epoch Time Average Minibatch Size

(Current HW) 1779 165.1
FP16 7 22 1462 170.]
EDR IB 12 1 1245 166.6

FP16 + EDR IB 8 15 1128 171.5
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GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data

« Background

Snore sound (SnS) data carry very important information for diagnosis and
evaluation of Primary Snoring and Obstructive Sleep Apnea (OSA). With
the increasing number of collected SnS data from subjects, how to handle
such large amount of data is a big challenge. In this study, we utilize the
Graphics Processing Unit (GPU) to process a large amount of SnS data
collected from two hospitals in China and Germany to accelerate the
features extraction of biomedical signal.

» Acoustic features of SnS data
we extract 11 acoustic features from a large amount of SnS data, which can be

visualized to help doctors and specialists to diagnose, research, and remedy
the diseases efficiently.

Snore sound data information

Subjects | Total Time Data Size Data Sampling Rate
(hours) (€1=)) format

187.75 31.10 16 kHz, Mono
(Chlna +
Germany)

P s CPl e—Znced Up

Running Tirmne [Seconds)
=y
Spead Up

1

1000
e m m A J ]
2 4 a 16 32

Data Size (Mumber Of Subjscts)

Results of GPU and CPU based systems for processing SnS data

Result
We set 1 CPU (with Python2.7, numpy 1.10.4 and scipy 0.17 packages) for
processing 1 subject’s data as our baseline. Result show that the GPU based
system is almost 4.6 X faster than the CPU implementation. However, the
speed-up decreases when increasing the data size. We think that this result
should be caused by the fact that, the transmission of data is not hidden by other
computations, as will be a real-world application.

* Jian Guo, Kun Qian, Huijie Xu, Christoph Janott, Bjorn Schuller, Satoshi Matsuoka, “GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data” , In proceedings of 5th IEEE Global Conference on

Consumer Electronics (GCCE 2016), October 11-14, 2016.



Hierarchical matrix(H-matrix) for CNN acceleration

- Hierarchical matrix is an efficient data-sparse representations of
certain densely populated matrices.
- CNN(Convolutional Neural Network)
 Back ground
- Hierarchical matrix(H-matrix) is a an
approximated form represent n X n correlations

of n objects, which usually requires an X n huge
dense matrix.

dense matrix Hierarchical matrix
- Significant savings in memory when compressed
0(n?) = 0(knlogn)
- Computational complexity
0(n3) = 0(k*nlogn?)
such as matrix-matrix multiplication,
LU factorization, Inversion...

The H-matrix approximation of dense matrix.
The red blocks are dense matrices. The green block
are low-rank matrices with rank k.



Preliminary Results — Compression rate of matrices

SDPARA Deep Learning (CNN)
Compression rate(%)
25.00
; 1 Size of matrix
20.23 Size of matrix o ot
4.000 : :
20.00 3.567
7.00
15.80 3.500
3.000 6.00
1500 2.396 4.717
= 2.500 & 500 4338
2 1.834 2
= 2.000 = 4.00
10.00 N N
v 1.500 v 3,00
1.000 0.841 200 1610
>-00 0.500 I 1.00 I
0.000 0.00
0.00 . f matri X n) Matrix A Matrix B Matrix A Matrix B
1632 2673 a150  o15P MR X ip337 16758 22275 29056
W non-compressed M compressed B non-compressed M compressed
=&=bemld =®=sdpara (m, n, k) = (1764, 1350, 178) (m, n, k) = (324, 298, 1908)

Compressive rate = (uncompressed size) / (compressed size) ~ — Matrix A successfully compressed! — Matrix B successfully compressed!

We can compress the matrix in some applications.
In CNN system application, Sgemm(Single precision
- bem1d: 1-Dimention Boundary element method floating General Matrix Multiplication) C=aAB + [C

- sdpara: A parallel implementation of the inter-point accounts for large part of calculation (around 70%).
method for Semi-Define Programming(SDP)



Power optimization using Deep Q-Network

- Background

Power optimization by frequency control in existing research

-~

Performance counter
Temperature
Frequency,...

P=f(x,x,,...)
jZ’:'exe :::cg;<:)cl’ Jc:!"'

)

Kento Teranishi

Frequency

» Detailed analysis is necessary
» Low versatility

- Objective
Implement the computer

control system using Deep Q-Network. Counter

Power

" Deep Q-Network (DQN)

Deep reinforcement learning

N

Calculate action value function Q from neural network
Used for game playing Al, robot car, AlphaGO.

\\\ Frequency

Temperature
etc.

/

‘ [ Use Deep Learning for analysis. }

Frequency
control



Two Al CREST Programs
(2016-2023) ~S40 mil x 2

Intelligent Information Processing Systems Creating Co-Experience
Knowledge and Wisdom with Human-Machine Harmonious Collaboration

Research Supervisor: Norihiro Hagita (Board Director, Director,
Intelligent Robotics and Communication Laboratories, Advanced
Telecommunications Research Institute International)

Development and Integration of Artificial Intelligence Technologies
for Innovation Acceleration

Research Supervisor: Minoru Etoh (Senior Vice President,
General Manager of Innovation Management Department, NTT
DOCOMO, INC.)




TSUBAME2&3

Joint Operation Plan

New dedicated datacenter space
for Tsubame3 => retain TSUBAME2 \

w = w]1QORB+- -

object store

(future)
50m?

Joint operation 2017~2019

— TSUBAME3: mainline HPC operations

— TSUBAME2.5: specialized operationsﬁ;ﬂ
industry jobs, long running, Al/BD.

|_ .

H

Power capped not to exceed power &
cooling limits (4MW)

Total 6~7000 GPUs, ~70Pflops for Al

— Storage enhanced to cope w/capacity

— Pending budgetary allocation

Construction on new IDC space started ==

T

Tgubz;m

e3+stora e

‘ (e I

1

ﬁ] FIEE ME-URN R NN NN

2714F

NJg -

éxbp

Future: TSUBAME3+TSUBAMEAZ joint ops




Comparison of Machine Learning / Al Capabilities
of TSUBAMES3+2. 5 and K—Computer

!3 w.z\‘r‘.'fr‘:fi‘il:l A ft er

In| BRI XS

Tokyo Institute of 'i'ne-|:I11~|:|~I-:n:_;p],|I

RIK=N RIKEN Advanced Institu f r Computatio lS

,,,,, .
>

¥ (effectively more |

due to optimized | E |
" DL SW Stack on K Computer (2011)

TSUBAME2.5(2013) GPUs)
+TSUBAME3.0(2017)

Deep Learning
FP32 11.4 Petaflops

Deep Learning / Al Capabilities
FP16+FP32 up to ~70 Petaflops Slightly faster than U-
+ up to 100PB online storage Tokyo under this metric




Al Research Center (AIRC), AIST
Now > 300+ FTEs

. Manufacturing Big Sciences
Health Car Innovative . . . )
el e Industrial robots Bio-Medical Sciences

Retailin
Elderly Care 2 Automobile Material Sciences

Institutions . Seclzjgty.
Companies 4 etwork Service

— Communication

P
A\ -

ansferApplication Domain Standard Tasks 1cchno transfer

h AT Pl ‘ andard Data erprises

Technol
Joint re

Planning/Business Team

S

Planning/Business Team C
n

Image Recognition
3D Object recognition

Planning
Control

NLP, NLU Behavior Prediction
Text mining ining & Modelingl Recommend

Matsuoka : Joint Brain Inspired AI Data-Knowledge integration Al

appointment as
“Designated” Fellow

Model of

Model of
( ‘Model o Model of Basal ganglia
Hippocampus Cerebral cortex ——

Ontology . gl
Knowledge O8I & Probabilistic

Sy Modeling‘/

Bayesian net ...

since July 2017 Core Center of AI for Industry-Academia Co-operation



The current status of Al & Big Data in Japan

We need the triage of algorithms/infrastructure/data but we lack the
infrastructure dedicated to Al & Big Data (c.f. Google)

Machine| Learning
Algorithms
Use of Massive Scale Data now
Wasted
Petabytes of Drive FAs+OKvhanRvS
DENSO Recording Video FANUC
A FA&Robots
T})\YO/‘T)-\ —unSEIEFEEJEEH%’%Fﬁ @
Al&Data Processi eb acoess and Sk NI
IoT Communication,
InfraStrUCt S Daﬁ\ location & other data



The current status of Al & Big Data in Japan

We need the triage of algorithms/infrastructure/data but we lack the
infrastructure dedicated to Al & Big Data (c.f. Google)

Acceleration & Scaling of DL
& other ML Algorithms & SW

o Bl 7

Application—based Solution providers
of ML (e.g. Pharma, Semiconductors)
Custom ML/DL Software

Al&Data Processi
Infrastruct

Machine
ee%'{;%'f—ﬁ%' Algor

“Chainer” OSS DL Framework
Many applications in manufacturing

Learning

Investigating the Application of DL
ithms

‘DeNA

MIZWHO

HT(FERETH

web, pharma, etc.

®
TLAB
DE N/SD IT LABORATIDRY, INC.

Analysis of automotive cameras
Performance analysis & improvement of DL

£ -
b

Use of Massive Scale Data now

Wasted
Petabytes of Drive FA&0Kvhankvoy
DENSO Recording Video FANUC
e FA&Robots
D _ap
TOYOTA @ﬁ-ﬁ-lw
—memz, H A B 8RR Y_’ ®
Web access and ool . NTT

S

merchandice
Data

IoT Communication,
location & other data



The current status of Al & Big Data in Japan

We need the triage of algorithms/infrastructure/data but we lack the
infrastructure dedicated to Al & Big Data (c.f. Google)

éﬁifﬁ;ﬁ;@%g{h ' Machine |Learning
P Nsterred  Algorithms

\/ FUjiTSU : s
b*( ) “Chainer” OSS DL Framework p DQNA HE BT

Many applications in manufacturing _ _j‘L 3
Application—based Solution providers web, pharma, etc. S TH={Jll Panasonic
of ML (e.g. Pharma, Semiconductors) o Clb
Custom ML/DL Software ITIAB \ : ABEJA

Analy: E5E 5 + 5 S AR ~ Use of Massive Scale Data now
Perfoi ‘ABFESMEEEE®RIE  tof DL Wasted

liﬁ;ﬁﬁé%ﬁ%ﬁﬂ% 1 &ORvbaORvI Y
DENSO Petabytes of Drive E‘A"‘h*i L"ic

Investigating the Application of DL

Massive Rise in Computing
Requirements

| Recording Video
i ) g
amazon VndonsAZIe [ Q’u‘ﬁ FA&Robots
webservices 7 .
#» SAKURA Internet TOYOT @ﬁLr\I__RQ_I_l

—wmmzs A HENERFRSRAT

Insufficient to Counter the Giants
Web access and

Y’ O,
(Google, Microsoft, Baidu etc.) . SoftBank  NTT
merchandice

in their own game AI&Dat% Massive “Big” Data \Data loT Communication,
Infrastructures in Training location & other data




The “Chicken or Egg Problem” of
AlI-HPC Infrastructures

* “On Premise” machines in clients => “Can’ t invest in big in Al
machines unless we forecast good ROI. We don’ t have the
experience in running on big machines.”

 Public Clouds other than the giants => “Can’ t invest big in Al
machines unless we forecast good ROI. We are cutthroat.”

 Large scale supercomputer centers => “Can’ t invest big in Al
machines unless we forecast good ROI. Can’t sacrifice our existing
clients and our machines are full”

 Thus the giants dominate, Al technologies, big data, and people stay
behind the corporate firewalls---



But Commercial Companies esp. the “Al
Giants are Leading Al R&D, are they not?

* Yes, but that is because their shot—term goals could harvest the
low hanging fruits in DNN rejuvenated Al

 But AI/BD research is just beginning—— if we leave it to the
Interests of commercial companies, we cannot tackle difficult

problems with no proven ROI
* Very unhealthy for research

* This is different from more mature
fields, such as pharmaceuticals or
aerospace, where there is balanced
Investments and innovations in both
academia/government and the industry a s wmoo,

e The Information Research Topics ~ About  OurSubscribers  LogIn Q

Snap’s Advertising Dilemma

Trending Stories | The Reality Behind Magic Leap
Google Scaled Back Self-Driving Car Ambitions

EXCLUSIVE  pupiished ab

Google Scaled Back Self-Driving Car
Ambitions

project. Instead, the self-driving car pioneer has settled on a more practical effort to

partner with automakers to make a vehicle that drives itself but has traditional features

for human drivers.

Meanwhile, Larry Page is planning to move its self-driving unit out of Google X, its



ABCI Prototype: AIST Al Cloud (AAIC)
March 2017 (System Vendor: NEC)

« 400x NVIDIA Tesla P100s and Infiniband EDR accelerate various Al workloads
Including ML (Machine Learning) and DL (Deep Learning).

« Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache
Spark w/ its ecosystem.

SINETS

Internet Firewall )
: ™ + FortiGate 3815D x2 :
Connection - FortiAnalyzer 1000E x2 J

10-100GbE

ent Network
GbE or 10GbE

Service and Manage&

AI Computation System SOOREE RGNS e | grge Capacity Storage System
Computation Nodes (w/GPU) x50 30TB Memory DDN SFA14K
» Intel Xeon E5 v4 x2 56TB SSD - File server (w/10GbEx2,
« NVIDIA Tesla P100 (NVLink) x8 IB EDRx4) x4
. i Interactive Nodes . 8TB 7.2Krpm NL-SAS : :
Computation Nodes (w/o GPU) x68 X2 HDD x730 >4PiB effective
. Intel Xeon E5 v4 x2 [ Mgmt & Service ] . GRIDScaler (GPFS) RW100GB/s
|« 256GiB Memory, 480GB SSD Nodes x16 4

IB EDR (100Gbps)

Computation Network Bi-direction 200Gbps

Mellanox CS7520 Director Switch Full bi-section bandwidth
« EDR (100Gbps) x216

IB EDR (100Gbps)




METI AIST-AIRC ABCI @’
as the worlds first large—scale OPEN Al Infrastruc 1.‘u’}"¢=,B -
 ABCI: Al Bridging Cloud Infrastructure

e Top—Level SC compute & data capability (1307200 Al-Petaflops)

e Open Public & Dedicated infrastructure for Al & Big Data Algorithms,
Software and Applications

 Platform to accelerate Jomt academlc mdustry R&D for Al in Japan

& 130~200 Al-Petaflops n

e <3MW Power
« <1.1Avg. PUE
N Operational 2017Q3~Q4 )

o 50K o Univ. Tokyo Kashiwa Campus

wstirue o ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

A2



ABCI - 2017Q4~ 2018Q1

Extreme computing power
- w/ 130~200 AI-PFlops for Al, ML, DL

- x1 million speedup over high-end PC: 1 Day training for
3000-Year DNN training job

- TSUBAME-KFC (1.4 Al-Pflops) x 90 users (T2 avg)

Big Data and HPC converged modern design

- For advanced data analytics (Big Data) and scientific E |
simulation (HPC), etc. \

- Leverage Tokyo Tech’s “TSUBAME3” design, but
differences/enhancements being AI/BD centric

Ultra high bandwidth and low latency in memory,
network, and storage

— For accelerating various AI/BD workloads

— Data-centric architecture, optimizes data movement
Big Data/AI and HPC SW Stack Convergence

— Incl. results from JST-CREST EBD

— Wide contributions from the PC Cluster
community desirable.

TR A

amionaL instirute of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)
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“SC Accelerated” Cloud IDC for Al

Ultra-dense IDC designh from ground-up

— Custom inexpensive lightweight “warehouse” building w/
substantial earthquake tolerance

— Revolutionize traditional IDCs to accommodate
commoditized SCs for AI, x10~x20 density

Cloud ecosystem
— Big Data and HPC standard software stacks

Extreme green - >60KW/rack, PUE<1.05

- Intra-room Pod-based scalable design, liquid and air-cooled
nodes can be mixed

— Ambient warm liquid cooling, large Li-ion battery storage, and
high-efficiency power supplies, etc.
Advanced cloud-based operation

- Incl. dynamic deployment, container-based Vvirtualized
provisioning, multitenant partitioning, and automatic failure
recovery, etc.

— Joining HPC and Cloud Software stack for real

Reference Image

amionaL instirute of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)
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i National Institute for

National institute of S 10 oo i .
Advancsg ncusin Soence Advanced Industrial TRR(ERTIZA RS Director
AIST . .
MR Science and Technology Satoshi Matsuoka

EESER T ERTAR (AIST)

f’ SR

Ministry of Economy, Trade and Industry

Ministry of Economics
Trade and Industry (METI)

AIST Artificial

Intelligence

Research
Center (AIRC)

Application Area
Natural Langauge
Processing
Robotics

Security

— BISRE (EHLRUHZER)
Matsuoka will be

: — BISRE (EHHETHFRE)
appointed 15% to HOTEE GSIC
AIST AI-OIL — SRR E 8 (BRI
starting summer Resources and Acceleration of
— JIRERE

T ﬂl;fﬂ '/;.:E FH—

Al / Big Data, systems research

Joing Organization@QOdaiba
AIST-TokyoTech ’

” Al/Big Data Open
Innovation Laboratory

Joint (OIL) ~
Research on

Will start Feb 20, 2017

Al / Big Dat .
an{j & ra Industrial
applications Collaboration in data,

applications

Industry

JAPAN

Basic Research
in Big Data / Al
algorithms and
methodologies

YAaHQO! IT IAB DENSQOe®e

DENSO IT LABORATORY, INC.

Tsubame 3.0/2.5
Big Data /Al
resources

School of Information
Sciene and Engineering

Other Big Data / Al

research organizations
and proposals




Software Ecosystem for HPC in Al

Different SW Ecosystem between HPC and Al/BD/Cloud
How to achieve convergence—for real, for rapid tech transfer

Existing Clouds

BD/AI User Applications

Application Layer Existing Supercomputers

» Cloud Jobs often Interactive w/resource control REST APIs

» HPC Jobs are Batch-Oriented, resource control by MPI HPC User Code
- - Graph P i
Machwﬁill;jal‘nlg rapGraLOh(;?/SSIHQ SQL/Non-SQL System Software Layer Numerical Libraries . Workflow
i i i : - Various DSLs
Mahout/Chainer /S;'I':‘G"g ) Hive/Plg Cloud employs High Productivity Languages but LAPACK, FFTW Systems
P performance neglected, focus on data analytics and
) ) dynamic frequent changes
E Java - Scala - Python + IDL ] HPC employs High Performance Languages but requires Fortran - C- C++ + IDL
@ MapReduce Framework ) Ninja Programmers, low productivity. Kernels & compilers
pSpark/Hadoop well tuned & result shared by many programs, less rewrite MPI - OpenMP/ACC - CUDA/OpenCL
> - Cloud focused on databases and data manipulation workflow
RDB CloudDB/NoSQL HPC focused on compute kernels, even for data processing. _
PostgresQL Hbase/Cassandra/MondoDB Jobs scales to thousands of jObS, thus debugging and Parallel Debuggers and Profilers
: i performance tuning
Distributed Filesysem Coordination Service Cloud requires purpose-specific computing/data environment .
HDFS & Object Store } Zookeeper as well as their mutual isolation & security LAl ] ey e T
y . . Lustre, GPFS, PBS Pro, Slurm, UGE
HPC requires environment for fast & lean use of resources,
ol R R but on modern machines reqguire considerable system
(Openstack) deraplie S
software support oS L
Linux OS ayer Linux OS
Hardware Layer X86 +

[ Local Node } [ x86 CPU
Storage

NErne
TOR Swtiches
High
Latency/Low

D \/ W\

InfiniBand/OPA

Cloud HW based on Web Server “commodity” x86 servers, High Capacity High Performance Accelerators
distributed storage on nodes assuming REST API access Low Latency NW SAN +Burst Buffers e.g. GPUs,
HPC HW aggressively adopts new technologies such a s FPGAs

GPUs, focused on ultimate performance at higher cost,
shared storage to support legacy apps

Various convergence research efforts underway but no realistic converged SW
Stack yet => achieving HPC - AI/BD/Cloud convergence key ABCI goal



We are implementing the US AI&BC
...in Japan, at AIRC w/ABCI

* Strategy 5: Develop shared public datasets and
environments for Al training and testing. The

THE NATIONAL

depth, quality, and accuracy of training datasets ARTIFICIAL INTELLIGENCE
and resources significantly affect Al performance. RESEARS@F%AA%?G?EEE&EJPMENT

Researchers need to develop high quality
datasets and environments and enable

responsible access to high-quality datasets as well National Science and Technology Council
as to testing and training resources.

Networking and Information Technology
Research and Development Subcommittee

» Strategy 6: Measure and evaluate Al technologies
through standards and benchmarks. Essential to
advancements in Al are standards, benchmarks,
testbeds, and community engagement that guide
and evaluate progress in Al. Additional research is
needed to develop a broad spectrum of
evaluative techniques.

October 2016




Co-Design of BD/ML/AI with HPC using BD/ML/AI

- for survival of HPC Acceleration and Scaling of
Accelerating BD/ML/AI vie HPC and ~lLarge Scale _Qrephs
Conventional HPC Apps Technologies and Wb/ o A
K” Infrastructures

Big I?ata Al- & asemi.  Dig Dataand
Optimizing System Oriented A\utomated Co- M L/Al Ap PS Ima and Video
Software and Ops Supercomput Acceleration of and

Methodologies

Acceleration

Future Big Data-AI Scaling, and
Supercomputer Design Control of HPC via &,
L BD/ML/Al and
ABCI: World'’s first and future SC designs

largest open 100 Peta Al-
Flops Al Supercomputer,
Fall 2017, for co-design




What is worse: Moore’s Law will end in the 2020’s

* Much of underlying IT performance growth due to Moore’s law
* “LSl: x2 transistors in 1~1.5 years”
* Causing qualitative “leaps” in IT and societal innovations
* The main reason we have supercomputers and Google...

*But this is slowing down & ending, by mid 2020s...!!!

* End of Lithography shrinks The curse qfconstcmt
* End of Dennard scaollng transistor power shall Gordon Moore
* End of Fab Economics soon b = om 115

*How do we sustain “performance growthg ﬁ%yond the “end of

Moore”?

* Not just one-time speed bumps
 Will affect all aspects of IT, including BD/AlI/ML/IoT, not just HPC
*End of IT as we know it



20 year Eras towards of End of Moore’s Law

o 1980s~2004 )
Dennard scaling,
perf+ = single
thread+ = transistor

20-year
Moore:Reanard
35 YEARS OF MICROPROCESSOR TREND DATA,\,,— Single Core
U4
A 3.5n d | | | | o ILP-Vector
? - 97onm an 7 remams Killer-Micro Era
ot i.beyond 2025- i i D
: : . Constant | IR S |
105 L Trans|st0rpower . .'. o " . ) 20 year
" ' ' ' ' ' Z T e post-Dennard
10" = (O NT)
Tan Many-Core Era
W : ¢ Fre
103 I U SO NSRRI, B LAY et o X e ::P:ﬁ;:em?
10° L ;‘i‘;t“"?""'f '-fﬁﬁ-"“‘e‘ -----
1 jats "‘; Number of
10" - g7 Cores
10° - _ 20-year
1975 1980 1985 1990 1995 2000 2005 2010 2015 Next-Gen

Onginal data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Need to realize the next 20-year era of supercomputing flat performance

Post-Moore era

& freq+ = power+
2004~2015 feature
scaling, perf+ =
transistor+ =
core#t+, constant
power
\2015"'2025 all /
above gets harder
2025~ post-Moore,
constant
feature&power =




The “curse of constant transistor power”
- lgnorance of this is like ignoring global warming -

* Systems people have been telling the algorithm people that
“FLOPS will be free, bandwidth is important, so devise
algorithms under that assumption”

* This will certainly be true until exascale in 2020...

e But when Moore’s Law ends in 2025-2030, constant transistor
power (esp. for logic) = FLOPS will no longer be free!

* So algorithms that simply increase arithmetic intensity will no
longer scale beyond that point

* Like countering global warming — need disruptive change in
computing — in HW-SW-Alg-Apps etc. for the next 20 year era




Performance growth via data-centric computing:
“From FLOPS to BYTES”

* |dentify the new parameter(s) for scaling over time

* Because data-related parameters (e.g. capacity and bandwidth) will still
likely continue to grow towards 2040s

e Can grow transistor# for compute, but CANNOT use them AT THE SAME
TIME(Dark Silicon) => multiple computing units specialized to type of data

* Continued capacity growth: 3D stacking (esp. direct silicon layering) and
low power NVM (e.g. ReRAM)

e Continued BW growth: Data movement energy will be capped constant by
dense 3D design and advanced optics from silicon photonics technologies

* Almost back to the old “vector” days(?), but no free lunch — latency still
problem, locality still important, need general algorithmic acceleration
thru data capacity and bandwidth, not FLOPS




Many Core Era

Post Moore Era

Flops-Centric Algorithms and Apps

Flops-Centric System Software

Homogeneous General Purpose Nodes

Compu Localized Dat
Node
Compu ute
Nod No
>

Loosely Coupled with Electronic Interconnect

Compute
odes

“/

Transistor Lithography Scaling

(CMOS Logic Circuits, DRAM/SRAM)

FRSTOOMUIparLion
woonicfy

Bytes-Centric Algorithms and Apps

Hardware/Software System APls b | ; 4 Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture ' Data-Centric Heterogeneous Architecture

Bytes-Centric System Software

Heterogeneous CPUs + Holistic Data

Reconfigurable
Massive BW Dataflow Optical
3-D Package DNN& Computing
. Neuromorphic
Non-Volatile Quantum
Memory Low Precision

Error-Prone
o000
Ultra Tightly Coupled w/Aggressive

3-D+Photonic Switching Interconnected

Novel Devices + CMOS (Dark Silicon)

(Nanophotonics, Non-Volatile Devices etc.)




Multi-Phyics
Simulation

Auto Tuning

Manufacturing Massive Medlcal
Imaging

Fusion/Plasma EMF Analysis

Post-Moore is NOT a

L Science Libraries

( Post-Moore Computational

Couplers
Low Rank

Approximation

BW Reducing Alg.
Algorithms

More-Moore device

dS d pPpanacea

and Al Libraries

Post-Moore Data Science

Data Assimilation — Out-of-core Alg —

High B/F Algorithms

—

Device & arch. advances

Uncertainty

. . Post-Moore Programming Model Quantification High—Level Accelerator—
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Post Moore Era Supercomputing Workshop @ SC16
 https://sites.google.com/site/2016pmes/

Jeff Vetter (ORNL), Satoshi Matsuoka (Tokyo Tech) et. al.
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