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32nm 40nm

>400GB/s Mem BW

80Gbps NW BW

~1KW max

>1.6TB/s Mem BW >12TB/s Mem BW

35KW Max

4224 GPUs

>600TB/s Mem BW

220Tbps NW 

Bisecion BW

1.4MW Max

TSUBAME2.0 Nov. 1, 2010

“The Greenest Production Supercomputer in the World”

• GPU-centric (> 4000) high performance & low power

• Small footprint (~200m2 or 2000 sq.ft), low TCO

• High bandwidth memory, optical network, SSD storage…

TSUBAME 2.0

New Development

2013 GPU 

Upgrade

TSUBAME2.5

5.7 Petaflops



3

Comparing K Computer to TSUBAME 2.5

Perf ≒
Cost <<

K Computer (2011)

11.4 Petaflops SFP/DFP
$1400mil 6 years

(incl. power)
x30 TSUBAME2

TSUBAME2.0(2010)
→ TSUBAME2.5(2013)

17.1 Petaflops SFP
5.76 Petaflops DFP

$45mil / 6 years (incl. power)

BG/Q Sequoia (2011)
22 Petaflops SFP/DFP
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Tsubame current & future plans
• TSUBAME 2.5 (Production) Sep. 2013 – Mar 2019 (and beyond)

– TSUBAME2.0 Nov. 2010-Sep. 2013, upgrade M2050 GPU -> K20X

– 1424 nodes / 4224 GPUs, to be reduced to ~1300 nodes upon TSUBAME3 deployment

– 5.7Petaflops (DFP), 17.1Petaflops (SFP)

• TSUBAME-KFC/DL (experimental, T3 Proto) – Oct 2013 – (Sep 2018 and beyond)
– Upgrade to KFC/DL Oct. 2015 K20X GPU -> K80 GPU

– 42 nodes / 336 GPU chips, 0.5/1.5 PF DFP/SFP

– Oil immersion, ambient cooling, PUE < 1.09

• TSUBAME 3.0 (Production) Aug 2017 ~2021 (and beyond) – Bid opens Jan 30th

– 12~15 Petaflops DFP depending on who wins

– Parallel production to TSUBAME2.5

– Focus on BD / AI workloads, not just traditional HPC => ~100PF max for AI combined with 2.5

• New IDC space construction for Tsubame3 and staggered operations beyond (T3+T4)
– Power (4MW) + ambient cooling + storage (up to 100PB HDD) + high floor load (> 1 Ton / m^2)

– To be completed March 2017

– Power/Energy minimization for joint op in development 4



TSUBAME-KFC/DL: TSUBAME3 Prototype [ICPADS2014]

High Temperature Cooling

Oil Loop 35~45℃
⇒ Water Loop 25~35℃

(c.f. TSUBAME2: 7~17℃)

Cooling Tower：
Water 25~35℃

⇒ To Ambient Air

Oil Immersive Cooling＋ Hot Water Cooling + High Density Packaging + Fine-
Grained Power Monitoring and Control, upgrade to /DL Oct. 2015

Container Facility

20 feet container (16m2)

Fully Unmanned Operation

Single Rack High Density Oil 

Immersion

168 NVIDIA K80 GPUs + Xeon

413+TFlops (DFP)

1.5PFlops (SFP)

~60KW/rack

2013年11月/2014年6月
Word #1 Green500



TSUBAME3.0

2006 TSUBAME1.0

80 Teraflops, #1 Asia #7 World

“Everybody’s Supercomputer”

2010 TSUBAME2.0

2.4 Petaflops #4 World

“Greenest Production SC”

2013

TSUBAME2.5 

upgrade

5.7PF DFP 

/17.1PF SFP

20% power 

reduction

2013 TSUBAME-KFC

#1 Green 500

2016 TSUBAME3.0+2.5

~20PF(DFP) 4~5PB/s Mem BW

10GFlops/W power efficiency

Big Data & Cloud Convergence

Large Scale Simulation

Big Data Analytics

Industrial Apps2011 ACM Gordon Bell Prize

2017 Q2 TSUBAME3.0 Leading Machine Towards Exa & Big Data
1.“Everybody’s Supercomputer” - High Performance (12~24 DP Petaflops, 125~325TB/s Mem, 

55~185Tbit/s NW), innovative high cost/performance packaging & design, in mere 180m2…

2.“Extreme Green” – ~10GFlops/W power-efficient architecture, system-wide power control, 
advanced cooling, future energy reservoir load leveling & energy recovery

3.“Big Data Convergence” – Extreme high BW &capacity, deep memory
hierarchy, extreme I/O acceleration, Big Data SW Stack 

for machine learning, graph processing, …

4.“Cloud SC” – dynamic deployment, container-based 
node co-location & dynamic configuration, resource 
elasticity, assimilation of public clouds…

5.“Transparency” - full monitoring & 
user visibility of machine
& job state, 
accountability 
via reproducibility

6

http://www.new.facebook.com/album.php?profile&id=20531316728
http://www.new.facebook.com/album.php?profile&id=20531316728


TSUBAME3 (some proposals) Bid open Jan 30th
• Extremely efficient power, FLOPS/W > 10 GFlops /W

• Extremely efficient cooling, PUE = 1.03  (annual avg), hot water cooling

• NVIDIA Pascal GPU accelerated architecture – TSUBAME2 Heritage

• Rich system interconnect BW – Intel Omipath, 1-to-1 GPU-to-HCA 
injection BW

• Rich accelerated I/O hierarchy – High Cap. / BW local NVMe on every 
node, aggregatable into single namespace via BeeGFS, staging from Lustre

• Up to 1 Petabyte capacity

• No Burst Buffer but exploits local storage to match performance much cheaper

• Full container based management for resource provisioning, isolation and 
execution environment control of accelerated systems

• Accelerated BD/AI/ML Software stack (partially) converged with HPC

• Future 100 Petabyte object store capacity extensions 



JST-CREST “Extreme Big Data” Project (2013-2018)

Supercomputers
Compute&Batch-Oriented

More fragile

Cloud IDC
Very low BW & Efficiency
Highly available, resilient

Convergent Architecture (Phases 1~4) 
Large Capacity NVM, High-Bisection NW

PCB

TSV Interposer

High Powered 
Main CPU

Low 
Power 
CPU

DRAM
DRAM
DRAM

NVM/Fla
sh

NVM/Fla
sh

NVM/Fla
sh

Low 
Power 
CPU

DRAM
DRAM
DRAM

NVM/Flas
h

NVM/Flas
h

NVM/Flas
h

2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM & 
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System
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Large Scale 
Metagenomics

Massive Sensors and 
Data Assimilation in 
Weather Prediction

Ultra Large Scale 
Graphs and Social 
Infrastructures

Exascale Big Data HPC 

Co-Design

Future Non-Silo Extreme Big Data Scientific Apps

Graph Store

EBD Bag

Co-Design 13/06/06  22 :36日本地図

1/1  ページfi le: ///Users/sh irahata/Pictu res/日本地図. svg

1000km

KV
S

KV
S

KV
S

EBD KVS

Cartesian Plane

Co-Design
Given a top-class 
supercomputer, 
how fast can we 
accelerate next 
generation big 
data c.f. Clouds?

Issues regading
Architectural, 
algorithmic, and 
system software 
evolution?

Use of GPUs?



Extreme Big Data (EBD) Team

Co-Design EHPC and EDB Apps
• Satoshi Matsuoka (PI), Toshio 

Endo, Hitoshi Sato (Tokyo Tech.) 
(EBD Software System)

• Osamu Tatebe (Univ. Tsukuba)
(EBD-I/O)

• Michihiro Koibuchi (NII)
(EBD Network)

• Yutaka Akiyama, Ken Kurokawa (Tokyo 
Tech) (EBD App1 Genome)

•

• Takemasa Miyoshi (Riken AICS)
(EBD App2 Weather, data assim.)

• Toyotaro Suzumura (IBM Watson / 
Columbia U)(EBD App3 Social Simulation)

• (now merged into Matsuoka Team)



The Graph500 – 2015~2016 – 4 Consecutive world #1 
K Computer #1 Tokyo Tech[EBD CREST] Univ. Kyushu [Fujisawa 

Graph CREST], Riken AICS, Fujitsu

List Rank GTEPS Implementation

November 2013 4 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid

November 2014 2 Efficient hybrid

June, Nov 2015
June Nov 2016

1 38621.4
Hybrid + Node 
Compression

*Problem size is 
weak scaling

“Brain-class” graph

88,000 nodes, 
660,000 CPU Cores
1.3 Petabyte mem
20GB/s Tofu NW

≫

LLNL-IBM Sequoia
1.6 million CPUs
1.6 Petabyte mem
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73% total exec 
time wait in

communication

TaihuLight
10 million CPUs
1.3 Petabyte mem

Effective x13 
performance c.f. 
Linpack



K-computer No.1 on Graph500: 4th Consecutive Time

• What is Graph500 Benchmark?
• Supercomputer benchmark for data intensive applications.

• Rank supercomputers by the performance of Breadth-First Search for very huge 
graph data.
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Sunway TaihuLight (China)

No.1

This is achieved by a combination 
of high machine performance and 

our software optimization.

• Efficient Sparse Matrix Representation with 
Bitmap

• Vertex Reordering for Bitmap Optimization

• Optimizing Inter-Node Communications

• Load Balancing

etc.
• Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi Matsuoka, "Efficient Breadth-First Search on 

Massively Parallel and Distributed Memory Machines", in proceedings of 2016 IEEE International Conference on Big Data (IEEE 
BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)
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Towards a Distributed Large-Scale Dynamic Graph Data Store 

Node Level Dynamic Graph Data Store

Extend for multi-processes using an async
MPI communication framework

Follows an adjacency-list format and leverages an 
open address hashing to construct its tables

2 billion 
insertions/s

In
se

rt
e
d 

B
ill

io
n
 E

dg
es

/
se

c

Number of Nodes (24 processes per node)

Multi-node Experiment

STINGER
• A state-of-the-art dynamic graph processing 

framework developed at Georgia Tech
Baseline model
• A naïve implementation using Boost library (C++) and 

the MPI communication framework

Goal: to develop the data store for large-scale 
dynamic graph analysis on supercomputers

K. Iwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and S. Matsuoka, Towards a distributed large-scale dynamic graph data store. In 2016 
IEEE Interna- tional Parallel and Distributed Processing Symposium Workshops (IPDPSW) 

Against STINGER (single-node)
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Baseline DegAwareRHH 212x

Dynamic Graph Construction (on-memory)



Large-scale Graph Colouring (vertex coloring)
• Color each vertices with the minimal #colours so that no two adjacent

vertices have the same colour
• Compare our dynamic graph colouring algorithm on DegAwareRHH against:

1. two static algorithms including GraphLab
2. an another graph store implementation with same dynamic algorithm (Dynamic-MAP) 

Static colouring Our DegAwareRHH Baseline

Scott Sallinen, Keita Iwabuchi, Roger Pearce, Maya Gokhale, Matei Ripeanu, “Graph Coloring as a Challenge Problem for Dynamic 
Graph Processing on Distributed Systems”, SC’16

13

SC’16



Incremental Graph Community Detection
• Background

• Community detection for large-scale time-evolving and dynamic 
graphs has been one of important research problems in graph 
computing.

• It is time-wasting to compute communities entire graphs every time 
from scratch.

• Proposal
• An incremental community detection algorithm based on core 

procedures in a state-of-the-art community detection algorithm 
named DEMON.

• Ego Minus Ego, Label Propagation and Merge

Hiroki Kanezashi and Toyotaro Suzumura, An Incremental Local-First Community Detection 
Method for Dynamic Graphs, Third International Workshop on High Performance Big Graph 
Data Management, Analysis, and Mining (BigGraphs 2016), to appear

101.0x
faster

101.5x 
faster

69.2x
faster



GPU-based Distributed Sorting
[Shamoto, IEEE BigData 2014, IEEE Trans. Big Data 2015]

• Sorting: Kernel algorithm for various EBD processing

• Fast sorting methods

– Distributed Sorting: Sorting for distributed system
• Splitter-based parallel sort

• Radix sort

• Merge sort

– Sorting on heterogeneous architectures
• Many sorting algorithms are accelerated by many cores and high memory bandwidth.

• Sorting for large-scale heterogeneous systems remains unclear

• We develop and evaluate bandwidth and latency reducing GPU-based HykSort on 
TSUBAME2.5 via latency hiding

– Now preparing to release the sorting library

EBD Algorithm Kernels



0

10

20

30

0 500 1000 1500 2000
# of proccesses (2 proccesses per node)

K
e
y
s
/s

e
c
o

n
d

(b
ill

io
n

s
)

HykSort 1thread
HykSort 6threads
HykSort GPU + 6threads

x1.4

x3.61

x389

0.25
[TB/s]

Performance prediction

x2.2 speedup compared to 
CPU-based 

implementation when the 
# of PCI bandwidth 
increase to 50GB/s

8.8% reduction of overall 
runtime when the 

accelerators work 4 times 
faster than K20x

• PCIe_#: #GB/s bandwidth 
of interconnect between 
CPU and GPU

• Weak scaling performance (Grand 
Challenge on TSUBAME2.5)

– 1 ~ 1024 nodes (2 ~ 2048 GPUs)
– 2 processes per node
– Each node has 2GB 64bit integer

• C.f. Yahoo/Hadoop Terasort: 
0.02[TB/s]

– Including I/O

GPU implementation of splitter-
based sorting (HykSort)



Xtr2sort: Out-of-core Sorting Acceleration 
using GPU and Flash NVM [IEEE BigData2016]

• Sample-sort-based Out-of-core Sorting Approach for Deep Memory 
Hierarchy Systems w/ GPU and Flash NVM

– I/O chunking to fit device memory capacity of GPU 

– Pipeline-based Latency hiding to overlap data transfers between NVM, CPU, 
and GPU using asynchronous data transfers, 
e.g., cudaMemCpyAsync(), libaio

RD R2H H2D EX D2H H2W WR

RD R2H H2D EX D2H H2W WR

RD R2H H2D EX D2H H2W WR

RD R2H H2D EX D2H H2W WR

RD R2H H2D EX D2H H2W WR

RD R2H H2D EX D2H H2W WR

chunk&i

chunk&i+1

chunk&i+2

chunk&i+3

chunk&i+4

RD R2H H2D EX D2H H2W WR

chunk&i+5

chunk&i+6

c chunks
time

GPU

GPU + CPU + NVM

CPU + NVM

How to combine deepening memory layers for future 
HPC/Big Data workloads, targeting Post Moore Era? 

x4.39



Hierarchical, UseR-level and ON-demand File system(HuronFS)
(IEEE ICPADS 2016) w/LLNL

• HuronFS: dedicated dynamic instances to provide “burst buffer” for caching data

• I/O requests from Compute Nodes are forwarded to HuronFS

• The whole system consists of several SHFS (Sub HuronFS) 

• Workload are distributed among all the SHFS using hash of file path

• Each SHFS consists of a Master and several IOnodes

• Masters: controlling all IOnodes in the same SHFS and handling all I/O requests 

• IOnodes: storing actual data and transferring data with Compute Nodes

• Supporting TCP/IP, Infiniband (CCI framework)

• Supporting Fuse, LD_PRELOAD

Parallel File System

Compute 

node 1

Compute 

node 2

Compute 

node N

HuronFS
Master

0
IOnode

IOnode IOnode

IOnode IOnode

Parallel File system

SHFS 0

IOnode

IOnode IOnode

SHFS Y

HuronFS

Master

M-1
IOnode

IOnode IOnode

IOnode IOnode

SHFS M-1

Compute 

node X

Master

Y
IOnode

IOnode

static hash



HuronFS Basic IO Performance
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Plans
• Continuing researching on auto buffer allocation

• Utilizing computation power on IOnodes
• Data preprocessing

• Format conversion

Jobn

IOnode

Data preprocessing, 
format conversion, etc..

Jobn+1

Jobn

IOnode

Jobn+1

format 
conversion

Network
Network

Processing 
on IOnodes

In Memory



Fortran
+ top performance

+ HPC legacy
- hard to maintain

- Not used in BD/AI

Python
+ ease of programming

often used in BD/AI
+ general-purpose tools
- big runtime overhead

Dillema

•Performance or ease-of-programming?

Solution

•Python for development, Fortran at runtime.

take legacy Fortran

• reuse legacy code

• keep battle-tested 
implementations

migrate to Python

• happens once

• semi-automatic or 
automatic

• performance-critical 
data is retained (via 
Type Hints)

• user can easily extend 
functionality

translate performance-
critical kernels to Fortran

• JIT: at runtime

• fully automatic

• original performance 
is retained

• user doesn’t interact 
with Fortran

DGEMM performance the same as 
Fortran. 5× better than Numba. [1]

Migrated Miranda IO benchmark 
retains original performance. [1]

230×

5×

6×6×

[1] Mateusz Bysiek, Aleksandr Drozd, Satoshi Matsuoka. “Migrating Legacy Fortran to Python While Retaining Fortran-Level Performance 
Through Transpilation and Type Hints”. In: Proceedings of the 6th Workshop on Python for High-Performance and Scientific Computing. 
PyHPC 2016. Salt Lake City, Utah, USA. ACM, 2016, URL: http://conferences.computer.org/pyhpc/2016/papers/5220a009.pdf

Results:
Solving the Python Performance Problem

http://conferences.computer.org/pyhpc/2016/papers/5220a009.pdf


Open Source Release of EBD System 
Software (install on T3/Amazon/ABCI)

• mrCUDA
• rCUDA extension enabling remote-

to-local GPU migration 
• https://github.com/EBD-

CREST/mrCUDA
• GPU 3.0
• Co-Funded by NVIDIA

• CBB
• I/O Burst Buffer for Inter Cloud 

Environment
• https://github.com/EBD-

CREST/cbb
• Apache License 2.0
• Co-funded by Amazon

• ScaleGraph Python
• Python Extension for ScaleGraph

X10-based Distributed Graph Library 
• https://github.com/EBD-

CREST/scalegraphpython
• Eclipse Public License v1.0

• GPUSort
• GPU-based Large-scale Sort
• https://github.com/EBD-

CREST/gpusort
• MIT License

• Others in development…

https://github.com/EBD-CREST/mrCUDA
https://github.com/EBD-CREST/cbb
https://github.com/EBD-CREST/scalegraphpython
https://github.com/EBD-CREST/gpusort
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Tremendous Recent Rise in Interest by the Japanese 
Government on Big Data, DL, AI, and IoT

• Three projects and centers on Big Data and AI launched by three competing 
Ministries for FY 2016 (Apr 2016-)
– MEXT – AIP (Artificial Intelligence Platform): Riken and other institutions ($~50 mil)

• A separate Post-K related AI funding as well.

– METI – AIRC (Artificial Intelligence Research Center): AIST (AIST internal budget + $~8 mil)

– MOST – Universal Communication Lab: NICT  ($50~55 mil)

– $1 billion commitment on inter-ministry AI research over 10 years

• However, lack of massive platform and expertise in parallel computing 
c.f. Google, FB, Baidu…
– MEXT attempts to suggest use of K computer 

-> community revolt “we want to use lots of GPUs like Google!”

– MEXT Vice Minister Sadayuki Tsuchiya himself visits Matsuoka at Tokyo Tech Feb 1st, 2016.

• “What is GPU and why is it so good for DL/AI?”

• “Can you and TSUBAME can contribute to the MEXT projects directly over multiple years, with appropriate funding?”

– Similar talks with METI & AIRC

• “Can TSUBAME be utilized to cover the necessary research workload at AIRC?” --- Satoshi Sekiguchi, Director of 
Informatics, AIST

23



Estimated Compute Resource Requirements for Deep Learning
[Source: Preferred Network Japan Inc.]

2015 2020 2025 2030 

1E〜100E Flops
自動運転車１台あたり1日 1TB
10台〜1000台, 100日分の走行データの学習

Bio / Healthcare

Image Recognition Robots / Drones

10P〜 Flops

1万人の5000時間分の音声データ
人工的に生成された10万時間の
音声データを基に学習 [Baidu 2015]

100P 〜 1E Flops
一人あたりゲノム解析で約10M個のSNPs
100万人で100PFlops、1億人で1EFlops

10P（Image) 〜 10E（Video） Flops

学習データ：1億枚の画像 10000クラス分類
数千ノードで6ヶ月 [Google 2015]

Image/Video
Recognition

1E〜100E Flops

1台あたり年間1TB
100万台〜1億台から得られた
データで学習する場合

Auto Driving

10PF 100EF100PF 1EF 10EF

P:Peta 
E:Exa
F:Flops 

機械学習、深層学習は学習データが大きいほど高精度になる
現在は人が生み出したデータが対象だが、今後は機械が生み出すデータが対象となる

各種推定値は1GBの学習データに対して1日で学習するためには
1TFlops必要だとして計算

To complete the learning phase in one day



Research on Advanced Deep Learning Applications 
(Part of JST Extreme Big Data Project 2013-2018)
• Deep Learning IS HPC!

• Training models – mostly dense MatVec
• Data Access for training target data sets
• Sharing updated training parameters 

in neural networks

• Goals
• Accelerate DL applications in EBD architectures ?

• Extreme-scale Parallelization, Fast Interconnects, Storage I/O, etc.

• Performance bottlenecks of multi-node parallel 
DL algorithms on current HPC systems ?

• Current Status
• Official Collaboration w/DENSO IT Lab signed November
• Profiling based bottleneck identification and performance 

modeling & optimization of a real DL application on TSUBAME
• Great result, joint paper being prepared for submission

• > 100 million images, 1500 GPUs (6 Pflops) 1 week grand challenge run
• Compete w/Google, MS, Baidu etc. in ILSVRC in ImageNet with shallow network

• To fit within smaller platforms e.g. Jetson
• Got reasonable results, about 10% accuracy with 15-layer CNN

• Denso Lab continues to run workloads on TSUBAME2.5 and TSUBAME-KFC/DL
• In talks with other companies, e.g. Yahoo! Japan

Many companies (ex. Baidu, etc.)  employ GPU-based 
Cluster Architectures, similar to TSUBAME2 & KFC

TSUBAME-KFC/DL
TSUBAME3.0

Prototype
1.5 PF for DNN

Comm CalcI/O

Real DL 
Applications

Performance Model
Feed Back



Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale 
Distributed Deep Learning System on GPU Supercomputers

Background

• In large-scale Asynchronous Stochastic Gradient Descent 
(ASGD), mini-batch size and gradient staleness tend to be 
large and unpredictable, which increase the error of trained 
DNN

Objective function E

W(t)
-ηΣi ∇Ei

W(t+1)
W(t+1)

-ηΣi ∇Ei

W(t+3)

W(t+2)

Twice asynchronous 
updates within 

gradient computation

Staleness=0

Staleness=2

DNN parameters space

Mini-batch size

(NSubbatch: # of samples per one GPU iteration)
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Proposal

• We propose a empirical performance model for an ASGD 
deep learning system SPRINT which considers probability 
distribution of mini-batch size and staleness

• Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of 
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", in proceedings of 
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



Approach and Contribution

 Approach: Proposing a performance model for an ASGD deep learning system 

SPRINT which considers probability distribution of mini-batch size and staleness

 Takes CNN structure and machine specifications as input

 Predicts time to sweep entire dataset (epoch time) and the distribution of the statistics

 Contribution

 Our model predicts epoch time, average mini-batch size and staleness with 5%, 9%, 19% 

error in average respectively on several supercomputers

 Our model steadily choose the fastest machine configuration that nearly meets a target 

mini-batch size

27



Performance Prediction of Future HW for CNN

 Predicts the best performance with two future architectural extensions

 FP16: precision reduction to double the peak floating point performance

 EDR IB: 4xEDR InfiniBand (100Gbps) upgrade from FDR (56Gbps)

→ Not only # of nodes, but also fast interconnect is important for scalability

28

N_Node N_Subbatch Epoch Time Average Minibatch Size

(Current HW) 8 8 1779 165.1

FP16 7 22 1462 170.1

EDR IB 12 11 1245 166.6

FP16 + EDR IB 8 15 1128 171.5

TSUBAME-KFC/DL ILSVRC2012 dataset deep learning
Prediction of best parameters (average minibatch size 138±25%)

16/08/08SWoPP2016



• Background

Snore sound (SnS) data carry very important information for diagnosis and 
evaluation of Primary Snoring and Obstructive Sleep Apnea (OSA). With 
the increasing number of collected SnS data from subjects, how to handle 
such large amount of data is a big challenge. In this study, we utilize the 
Graphics Processing Unit (GPU) to process a large amount of SnS data 
collected from two hospitals in China and Germany to accelerate the 
features extraction of biomedical signal.  

GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data

Subjects Total Time

(hours)

Data Size 

(GB)

Data 

format

Sampling Rate

57 

(China +

Germany) 

187.75 31.10 WAV 16 kHz, Mono

Snore sound data information

* Jian Guo, Kun Qian, Huijie Xu, Christoph Janott, Bjorn Schuller, Satoshi Matsuoka, “GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data”, In proceedings of 5th IEEE Global Conference on 

Consumer Electronics (GCCE 2016), October 11-14, 2016.

• Acoustic features of SnS data
we extract 11 acoustic features from a large amount of SnS data, which can be 

visualized to help doctors and specialists to diagnose, research, and remedy 

the diseases efficiently. Results of GPU and CPU based systems for processing SnS data

• Result
We set 1 CPU (with Python2.7, numpy 1.10.4 and scipy 0.17 packages) for 

processing 1 subject’s data as our baseline. Result show that the GPU based 

system is almost 4.6×faster than the CPU  implementation. However, the 

speed-up decreases when increasing the data size. We think that this result 

should be caused by the fact that, the transmission of data is not hidden by other 

computations, as will be a real-world application. 



Hierarchical matrix(H-matrix) for CNN acceleration

- Hierarchical matrix is an efficient data-sparse representations of 
certain densely populated matrices.

- CNN(Convolutional Neural Network)
• Back ground

- Hierarchical matrix(H-matrix) is a an
approximated form represent 𝑛 × 𝑛 correlations
of 𝑛 objects, which usually requires a 𝑛 × 𝑛 huge 
dense matrix.

- Significant savings in memory when compressed
𝑂 𝑛2 ⟹𝑂 𝑘𝑛 log 𝑛

- Computational complexity 
𝑂(𝑛3) ⟹ 𝑂(𝑘2𝑛 log 𝑛2)

such as matrix-matrix multiplication, 
LU factorization, Inversion…

Hierarchical matrixdense matrix

The H-matrix approximation of dense matrix. 
The red blocks are dense matrices. The green block 
are low-rank matrices with rank 𝑘.
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Preliminary Results – Compression rate of matrices

We can compress the matrix in some applications.

- bem1d: 1-Dimention Boundary element method
- sdpara:  A parallel implementation of the inter-point 
method for Semi-Define Programming(SDP)
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→ Matrix A successfully compressed! → Matrix B successfully compressed!

SDPARA Deep Learning (CNN)

In CNN system application, Sgemm(Single precision 
floating General Matrix Multiplication)  C = 𝛼AB + 𝛽C 
accounts for large part of calculation (around 70%).

(m, n, k) = (1764, 1350, 178) (m, n, k) = (324, 298, 1908)



Power optimization using Deep Q-Network
・ Background
Power optimization by frequency control in existing research 

 Detailed analysis is necessary

 Low versatility Use Deep Learning for analysis.

Performance counter
Temperature
Frequency,…

FrequencyP = f (x1, x2,...)

Texe = g(x1, x2,...)

Kento Teranishi

・ Objective
Implement the computer
control system using Deep Q-Network. Counter

Power
Frequency
Temperature
etc.

↑
↓

Frequency 
control

Deep Q-Network (DQN)
Deep reinforcement learning
Calculate action value function Q from neural network
Used for game playing AI, robot car, AlphaGO.



Two AI CREST Programs
(2016-2023) ~$40 mil x 2

Research Supervisor: Norihiro Hagita (Board Director, Director, 
Intelligent Robotics and Communication Laboratories, Advanced 
Telecommunications Research Institute International)

Development and Integration of Artificial Intelligence Technologies 
for Innovation Acceleration

Intelligent Information Processing Systems Creating Co-Experience 
Knowledge and Wisdom with Human-Machine Harmonious Collaboration

Research Supervisor: Minoru Etoh (Senior Vice President, 
General Manager of Innovation Management Department, NTT 
DOCOMO, INC.)



TSUBAME2&3
Joint Operation Plan

• New dedicated datacenter space 
for Tsubame3 => retain TSUBAME2

• Joint operation 2017~2019

– TSUBAME3: mainline HPC operations

– TSUBAME2.5: specialized operations –
industry jobs, long running, AI/BD.

• Power capped not to exceed power & 
cooling limits (4MW)

• Total 6~7000 GPUs, ~70Pflops for AI
– Storage enhanced to cope w/capacity

– Pending budgetary allocation

• Construction on new IDC space started

• Future: TSUBAME3+TSUBAME4 joint ops

Tsubame2.5
180m2 5.7 PFlops

100PB+ 
object store 

(future)
50m2

Tsubame3+storage 
150m2

12~14PF + ~20PB



Comparison of Machine Learning / AI Capabilities
of TSUBAME3+2.5 and K-Computer

x~7
>>

(effectively more 
due to optimized 
DL SW Stack on 

GPUs)

K Computer (2011)

Deep Learning

FP32 11.4 Petaflops

TSUBAME2.5(2013)
+TSUBAME3.0(2017)

Deep Learning / AI Capabilities
FP16+FP32 up to ~70 Petaflops
+ up to 100PB online storage

Slightly faster than U-

Tokyo under this metric



Core Center of AI for Industry-Academia Co-operation

Application Domains

NLP, NLU 
Text  mining

Behavior 
Mining & Modeling

Manufacturing
Industrial robots

Automobile

Innovative 
Retailing

Health Care
Elderly Care 

Deployment of AI in real businesses and society 

Data-Knowledge integration AIBrain Inspired AI

Ontology
Knowledge

Model of
Hippocampus

Model of
Basal ganglia

Logic & Probabilistic
Modeling

Bayesian net ･･･

･･･

Security
Network Services
Communication

Big Sciences
Bio-Medical Sciences

Material Sciences

Model of
Cerebral cortex

Technology transfer
Starting Enterprises

Start-Ups
Institutions
Companies

Technology transfer
Joint research Common AI Platform

Common Modules
Common Data/Models

Planning
Control

Prediction
Recommend

Image Recognition
3D Object recognition

Planning/Business Team

･･･

Effective Cycles among Research and Deployment of AI 

Standard Tasks
Standard Data

AI Research Framework

Planning/Business Team

AI Research Center (AIRC), AIST
Now > 300+ FTEs

Matsuoka : Joint 
appointment as 
“Designated” Fellow 
since July 2017



The current status of AI & Big Data in Japan
We need the triage of algorithms/infrastructure/data but we lack the 
infrastructure dedicated to AI & Big Data (c.f. Google)

Machine Learning
Algorithms

AI&Data Processing
Infrastructures Data

IoT Communication, 
location & other data

Petabytes of Drive
Recording Video

FA&Robots

Web access and
merchandice

Use of Massive Scale Data now 
Wasted



The current status of AI & Big Data in Japan
We need the triage of algorithms/infrastructure/data but we lack the 
infrastructure dedicated to AI & Big Data (c.f. Google)

Machine Learning
Algorithms

AI&Data Processing
Infrastructures Data

IoT Communication, 
location & other data

Petabytes of Drive
Recording Video

FA&Robots

Web access and
merchandice

Use of Massive Scale Data now 
Wasted

Investigating the Application of DL
Acceleration & Scaling of DL 
& other ML Algorithms & SW

“Chainer” OSS DL Framework
Many applications in manufacturing
web, pharma, etc.

Analysis of automotive cameras
Performance analysis & improvement of DL

Application-based Solution providers 
of ML (e.g. Pharma, Semiconductors)
Custom ML/DL Software



The current status of AI & Big Data in Japan
We need the triage of algorithms/infrastructure/data but we lack the 
infrastructure dedicated to AI & Big Data (c.f. Google)

Machine Learning
Algorithms

AI&Data
Infrastructures Data

IoT Communication, 
location & other data

Petabytes of Drive
Recording Video

FA&Robots

Web access and
merchandice

Use of Massive Scale Data now 
Wasted

Investigating the Application of DL
深層学習処理の高度化・
高速化を模索

“Chainer” OSS DL Framework
Many applications in manufacturing
web, pharma, etc.

Analysis of automotive cameras
Performance analysis & improvement of DL

Application-based Solution providers 
of ML (e.g. Pharma, Semiconductors)
Custom ML/DL Software

車載カメラ映像解析
深層学習高性能化高速化
に関する基礎研究

Insufficient to Counter the Giants
(Google, Microsoft, Baidu etc.)
in their own game

Massive Rise in Computing
Requirements

Massive “Big” Data 
in Training



The “Chicken or Egg Problem” of 
AI-HPC Infrastructures

• “On Premise” machines in clients => “Can’t invest in big in AI 
machines unless we forecast good ROI. We don’t have the 
experience in running on big machines.”

• Public Clouds other than the giants => “Can’t invest big in AI 
machines unless we forecast good ROI. We are cutthroat.”

• Large scale supercomputer centers => “Can’t invest big in AI 
machines unless we forecast good ROI. Can’t sacrifice our existing 
clients and our machines are full”

• Thus the giants dominate, AI technologies, big data, and people stay 
behind the corporate firewalls…



But Commercial Companies esp. the “AI 
Giants”are Leading AI R&D, are they not?
• Yes, but that is because their shot-term goals could harvest the 

low hanging fruits in DNN rejuvenated AI 

• But AI/BD research is just beginning--- if we leave it to the 
interests of commercial companies, we cannot tackle difficult 
problems with no proven ROI

• Very unhealthy for research

• This is different from more mature
fields, such as pharmaceuticals or 
aerospace, where there is balanced 
investments and innovations in both 
academia/government and the industry  



ABCI Prototype: AIST AI Cloud (AAIC) 

March 2017 (System Vendor: NEC)

• 400x NVIDIA Tesla P100s and Infiniband EDR accelerate various AI workloads 
including ML (Machine Learning) and DL (Deep Learning).

• Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache 
Spark w/ its ecosystem.

AI Computation System Large Capacity Storage System
Computation Nodes (w/GPU) x50
• Intel Xeon E5 v4 x2
• NVIDIA Tesla P100 (NVLink) x8
• 256GiB Memory, 480GB SSD

Computation Nodes (w/o GPU) x68
• Intel Xeon E5 v4 x2
• 256GiB Memory, 480GB SSD

Mgmt & Service 
Nodes x16

Interactive Nodes 
x2

400 Pascal GPUs
30TB Memory

56TB SSD
DDN SFA14K
• File server (w/10GbEx2, 

IB EDRx4) x4
• 8TB 7.2Krpm NL-SAS 

HDD x730
• GRIDScaler (GPFS)

>4PiB effective
RW100GB/s

Computation Network
Mellanox CS7520 Director Switch
• EDR (100Gbps) x216

Bi-direction 200Gbps
Full bi-section bandwidth

Service and Management Network

IB EDR (100Gbps) IB EDR (100Gbps)

GbE or 10GbE GbE or 10GbE

Firewall
• FortiGate 3815D x2
• FortiAnalyzer 1000E x2

UTM Firewall
40-100Gbps class

10GbE

SINET5
Internet 

Connection
10-100GbE



METI AIST-AIRC ABCI
as the worlds first large-scale OPEN AI Infrastructure

43

Univ. Tokyo Kashiwa Campus

• 130~200 AI-Petaflops

• < 3MW Power
• < 1.1 Avg. PUE

• Operational 2017Q3~Q4

• ABCI: AI Bridging Cloud Infrastructure
• Top-Level SC compute & data capability (130~200 AI-Petaflops)

• Open Public & Dedicated infrastructure for Al & Big Data Algorithms,
Software and Applications

• Platform to accelerate joint academic-industry R&D for AI in Japan



ABCI – 2017Q4~ 2018Q1

• Extreme computing power
– w/ 130〜200 AI-PFlops for AI, ML, DL
– x1 million speedup over high-end PC: 1 Day training for

3000-Year DNN training job
– TSUBAME-KFC (1.4 AI-Pflops) x 90 users (T2 avg)

• Big Data and HPC converged modern design
– For advanced data analytics (Big Data) and scientific

simulation (HPC), etc.
– Leverage Tokyo Tech’s “TSUBAME3” design, but

differences/enhancements being AI/BD centric

• Ultra high bandwidth and low latency in memory,
network, and storage
– For accelerating various AI/BD workloads
– Data-centric architecture, optimizes data movement

• Big Data/AI and HPC SW Stack Convergence
– Incl. results from JST-CREST EBD

– Wide contributions from the PC Cluster
community desirable.
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“SC Accelerated” Cloud IDC for AI
• Ultra-dense IDC design from ground-up

– Custom inexpensive lightweight “warehouse” building w/
substantial earthquake tolerance

– Revolutionize traditional IDCs to accommodate
commoditized SCs for AI, x10~x20 density

• Cloud ecosystem

– Big Data and HPC standard software stacks

• Extreme green – >60KW/rack, PUE<1.05

– Intra-room Pod-based scalable design, liquid and air-cooled
nodes can be mixed

– Ambient warm liquid cooling, large Li-ion battery storage, and
high-efficiency power supplies, etc.

• Advanced cloud-based operation

– Incl. dynamic deployment, container-based virtualized
provisioning, multitenant partitioning, and automatic failure
recovery, etc.

– Joining HPC and Cloud Software stack for real

45

Reference Image

引用元: 共同通信デジタル

引用元: NEC導入事例

Reference Image



GSIC

AIST Artificial 
Intelligence 
Research 

Center (AIRC)

AIST-TokyoTech
AI/Big Data Open 

Innovation Laboratory 
(OIL)

Will start Feb 20, 2017

ラボ長（産総研研究職or 東工大
教員/クロスアポ）

副ラボ長（産総研研究職）

副ラボ長（産総研事務職）

ラボ研究主幹（産総研研究職）

ラボ構成員

Matsuoka will be
appointed 15% to 
AIST AI-OIL 
starting summer

Joing Organization@Odaiba

Industry

School of Information 
Sciene and Engineering

Other Big Data / AI 
research organizations 
and proposals

Tsubame 3.0/2.5
Big Data /AI 
resources

Industrial 
Collaboration in data, 
applications

Resources and Acceleration of
AI / Big Data, systems research

Basic Research 
in Big Data / AI 
algorithms and 
methodologies

Joint 
Research on 
AI / Big Data 
and 
applications

Application Area
Natural Langauge
Processing
Robotics
Security

National Institute for 
Advanced Industrial 
Science and Technology 
(AIST)

Ministry of Economics 
Trade and Industry (METI)

Director 
Satoshi Matsuoka



Software Ecosystem for HPC in AI
Different SW Ecosystem between HPC and AI/BD/Cloud
How to achieve convergence—for real, for rapid tech transfer

Linux OS

VM(KVM), Container(Docker), Cloud Services 
(OpenStack)

Ethernet
TOR Swtiches

High 
Latency/Low 
Capacity NW

Local Node 
Storage

x86 CPU

Distributed Filesysem
HDFS & Object Store

MapReduce Framework
Spark/Hadoop

BD/AI User Applications 

RDB
PostgresQL

Machine Learnig
MLlib/

Mahout/Chainer

Graph Processing
GraphX/
Giraph

/ScaleGraph

Java・Scala・Python + IDL

SQL/Non-SQL
Hive/Pig

CloudDB/NoSQL
Hbase/Cassandra/MondoDB

Coordination Service
ZooKeeper

Existing Clouds Existing SupercomputersApplication Layer

• Cloud Jobs often Interactive w/resource control REST APIs
• HPC Jobs are Batch-Oriented, resource control by MPI

System Software Layer

• Cloud employs High Productivity Languages but 
performance neglected, focus on data analytics and 
dynamic frequent changes

• HPC employs High Performance Languages but requires 
Ninja Programmers, low productivity. Kernels & compilers 
well tuned & result shared by many programs, less rewrite

• Cloud focused on databases and data manipulation workflow
• HPC focused on compute kernels, even for data processing. 

Jobs scales to thousands of jobs, thus debugging and 
performance tuning

• Cloud requires purpose-specific computing/data environment 
as well as their mutual isolation & security

• HPC requires environment for fast & lean use of resources, 
but on modern machines require considerable system 
software support

• Cloud HW based on Web Server “commodity” x86 servers, 
distributed storage on nodes assuming REST API access

• HPC HW aggressively adopts new technologies such a s 
GPUs, focused on ultimate performance at higher cost, 
shared storage to support legacy apps

OS Layer

Hardware Layer

Various convergence research efforts underway but no realistic converged SW 
Stack yet => achieving HPC – AI/BD/Cloud convergence key ABCI goal

HPC User Code 

Fortran・C・C++ ＋ IDL

Numerical Libraries
LAPACK, FFTW

Various DSLs

Parallel Debuggers and Profilers

MPI・OpenMP/ACC・CUDA/OpenCL

Parallel Filesystem
Lustre, GPFS,

Batch Job Schedulers
PBS Pro, Slurm, UGE

InfiniBand/OPA
High Capacity

Low Latency NW

High Performance 
SAN＋Burst Buffers

X86 + 
Accelerators 
e.g. GPUs, 

FPGAs

Linux OS

Workflow 
Systems



• Strategy 5: Develop shared public datasets and 
environments for AI training and testing. The 
depth, quality, and accuracy of training datasets 
and resources significantly affect AI performance. 
Researchers need to develop high quality 
datasets and environments and enable 
responsible access to high-quality datasets as well 
as to testing and training resources. 

• Strategy 6: Measure and evaluate AI technologies 
through standards and benchmarks. Essential to 
advancements in AI are standards, benchmarks, 
testbeds, and community engagement that guide 
and evaluate progress in AI. Additional research is 
needed to develop a broad spectrum of 
evaluative techniques. 

We are implementing the US AI&BD strategies already
…in Japan, at AIRC w/ABCI



Big Data AI-
Oriented

Supercomput
ers

Acceleration 
Scaling, and 

Control of HPC via 
BD/ML/AI and 

future SC designs

Robots / Drones

Image and Video

Big Data and 
ML/AI Apps 

and 
Methodologies

Large Scale Graphs

Future Big Data・AI
Supercomputer Design

Optimizing System
Software and Ops

Mutual and Semi-
Automated Co-
Acceleration of 

HPC and BD/ML/AI

Co-Design of BD/ML/AI with HPC using BD/ML/AI
- for survival of HPC

Accelerating 
Conventional HPC Apps

Acceleration and Scaling of 
BD/ML/AI via HPC and 

Technologies and 
Infrastructures

ABCI: World’s first and 
largest open 100 Peta AI-
Flops AI Supercomputer, 
Fall 2017, for co-design



What is worse: Moore’s Law will end in the 2020’s

•Much of underlying IT performance growth due to Moore’s law 
•“LSI: x2 transistors in 1~1.5 years” 
• Causing qualitative “leaps” in IT and societal innovations
• The main reason we have supercomputers and Google...

•But this is slowing down & ending, by mid 2020s…!!!
• End of Lithography shrinks
• End of Dennard scaling
• End of Fab Economics

•How do we sustain “performance growth” beyond the “end of 
Moore”?
• Not just one-time speed bumps
• Will affect all aspects of IT, including BD/AI/ML/IoT, not just HPC
• End of IT as we know it

Gordon Moore

The curse of constant 

transistor power shall 

soon be upon us



20 year Eras towards of End of Moore’s Law

3-5nm and 
beyond 2025-
Constant 
Transistor Power

• 1980s~2004 
Dennard scaling, 
perf+ = single 
thread+ = transistor 
& freq+ = power+

• 2004~2015 feature 
scaling, perf+ = 
transistor+ = 
core#+, constant 
power

• 2015~2025 all 
above gets harder

• 2025~ post-Moore, 
constant 
feature&power = 
flat performanceNeed to realize the next 20-year era of supercomputing

20 year
Post-Dennard
Many-Core Era

20-year
Moore-Dennard
Single Core
ILP-Vector 
Killer-Micro Era

20-year
Next-Gen
Post-Moore era



The “curse of constant transistor power”
- Ignorance of this is like ignoring global warming -

• Systems people have been telling the algorithm people that 
“FLOPS will be free, bandwidth is important, so devise 
algorithms under that assumption”

• This will certainly be true until exascale in 2020…

• But when Moore’s Law ends in 2025-2030, constant transistor 
power (esp. for logic) = FLOPS will no longer be free!

• So algorithms that simply increase arithmetic intensity will no 
longer scale beyond that point

• Like countering global warming – need disruptive change in 
computing – in HW-SW-Alg-Apps etc. for the next 20 year era 



Performance growth via data-centric computing: 
“From FLOPS to BYTES”

• Identify the new parameter(s) for scaling over time

• Because data-related parameters (e.g. capacity and bandwidth) will still 
likely continue to grow towards 2040s

• Can grow transistor# for compute, but CANNOT use them AT THE SAME 
TIME(Dark Silicon) => multiple computing units specialized to type of data

• Continued capacity growth: 3D stacking (esp. direct silicon layering) and 
low power NVM (e.g. ReRAM)

• Continued BW growth: Data movement energy will be capped constant by 
dense 3D design and advanced optics from silicon photonics technologies

• Almost back to the old “vector” days(?), but no free lunch – latency still 
problem, locality still important, need general algorithmic acceleration 
thru data capacity and bandwidth, not FLOPS



Transistor Lithography Scaling
(CMOS Logic Circuits, DRAM/SRAM)

Loosely Coupled with Electronic Interconnect

Data Data

Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture

Flops-Centric System Software

Novel Devices + CMOS (Dark Silicon)
(Nanophotonics, Non-Volatile Devices etc.)

Ultra Tightly Coupled w/Aggressive 
3-D+Photonic Switching Interconnected

Hardware/Software System APIs
Data-Centric Heterogeneous Architecture

Bytes-Centric System Software

Heterogeneous CPUs + Holistic Data

Data Data

Homogeneous General Purpose Nodes 
+ Localized Data

Reconfigurable
Dataflow

Optical
ComputingDNN&

Neuromorphic

Massive BW
3-D Package

Quantum
ComputingLow Precision

Error-Prone

Non-Volatile
Memory

Flops-Centric Algorithms and Apps Bytes-Centric Algorithms and Apps

Compute 
Nodes

Gen CPU Gen CPU

汎用CPU Gen CPU

~2025
M-P Extinction

Event 

Many Core Era Post Moore Era

Compute 
Nodes

Compute 
Nodes

Compute 
Nodes



Post-Moore High Bandwidth Hierarchical Memory 
Model

Post-Moore Data Science
and AI Libraries

Post-Moore Computational
Science Libraries

ComputationCommunicationMemory

PC-RAM

ReRAM

Photonic Switching

3D architecture
Next gen VIAs & silicon
fabrication

New memory Devices

Tnugsten VIAs and 3D silicon

Photonic Interposes

Silicon Photonics WDM Interconnect

Inductive ＴＣＩ

Building Block “gluable” architecture

Neural Networks/
Neromorphic/
Izing - Annealing

Brain-inspired Computing

Low-Reliability computing
Near threshold computing

Low-Reliablility Communication

Quantum Computing

Customizable logic

Photonic Compute Devices

Optical Packet Switching
STT-MRAM

High B/F Algorithms

Low Precision & 

Probablistic

Computing

Accelerator-
Specific 

Compilers

Accelerator 
“Binaries”

Programmable 
Logic

Data Memoization

Machine Learning

based acceleration

Data Assimilation

Parallel Space-and-Time

Algorithms

BW Reducing Alg.

Post-Moore 

Performance 

Parameters

Auto Tuning

Post-Moore 

Performamce

Models

Data & Custom Compute Centric Platform

Uncertainty 

Quantification

Couplers

Multi-Phyics

SImulation

Low Rank
Approximation

Out-of-core Alg

Massive Medical 
Imaging

Post-Moore Programming Model

Data-oriented 

Scheduling

Latency 

Hiding

Data-Movement

Runtime
Hierarchical Data

Abstractions
Fault 

Tolerance

High-Level 

Synthesis 

Compilers

Fusion/Plasma EMF AnalysisManufacturing

Post-Moore is NOT a 
More-Moore device 
as a panacea

Device & arch. advances
improving data-related
parameters over time

“Rebooting Computing”
in terms of devices,
architectures, software.
Algorithms, and 
applications necessary
=> Co-Design even
more important
c.f. Exascale



Post Moore Era Supercomputing Workshop @ SC16
• https://sites.google.com/site/2016pmes/

• Jeff Vetter (ORNL), Satoshi Matsuoka (Tokyo Tech) et. al.
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