
The Road to Exascale and Legacy
Software

for Dense Linear Algebra

Jack Dongarra
University of Tennessee &
Oak Ridge National Lab

The Road to Exascale and Legacy
Software

for Dense Linear Algebra
(or What I’ve Been Doing for the Last 43 Years)

Jack Dongarra
University of Tennessee &
Oak Ridge National Lab

Outline	for	the	Talk

• What	was	going	on	before
• What’s	the	current	situation
• What’s	planned	for	exascale

But	first,	a	word	about	the	DOE	Exascale Computing	Program

4 Exascale Computing Project, www.exascaleproject.org

DOE ECP has formulated a holistic approach that uses
co-design and integration to achieve capable exascale
Application Development Software

Technology
Hardware

Technology
Exascale
Systems

Scalable and
productive software

stack

Science and mission
applications

Hardware technology
elements

Integrated exascale
supercomputers

Correctness Visualization Data Analysis

Applications Co-Design

Programming models,
development environment,

and runtimes
ToolsMath libraries

and Frameworks

System Software,
resource management
threading, scheduling,
monitoring, and control

Memory
and Burst

buffer

Data
management
I/O and file

system
Node OS, runtimes

R
es

ilie
nc

e

W
or

kf
lo

w
s

Hardware interface

ECP’s work encompasses applications, system software, hardware technologies and
architectures, and workforce development

5 Exascale Computing Project, www.exascaleproject.org

The DOE ECP Plan of Record

• A 7-year project that follows the holistic/co-design approach, which
runs through 2023 (including 12 months schedule contingency)
– To meet the ECP goals

• Enable an initial exascale system based on advanced architecture
and delivered in 2021

• Enable capable exascale systems, based on ECP R&D, delivered in
2022 and deployed in 2023 as part of an DOE facility upgrade

• Acquisition of the exascale systems is outside of the ECP scope, will
be carried out by DOE facilities

6 Exascale Computing Project, www.exascaleproject.org

Funding for ECP Application, Co-design Center, and
Software Project

7 Exascale Computing Project, www.exascaleproject.org7

ECP at UTK/ICL Involved in 7 Projects
• Software Technology (35 funded projects); UTK/ICL is participating in…

– SLATE – provides SOA algorithmic and technology innovation in dense
linear algebra software

– EXA-PAPI - provides tool designers and application engineers with a consistent
interface and methodology for the use of low-level performance counter
hardware found across the system

– PaRSEC - provides a runtime component to dynamically execute on
heterogeneous distributed systems

– OMPI – provides MPI for exascale through improvements in scalability, capability,
and resilience.

– XSDK – provides interoperability across existing numerical libraries hypre, PETSc,
SuperLU, Trilinos, MAGMA, PLASMA and DPLASMA

– Peeks – provides interfaces and fundamental sparse kernels to make future GPU
solvers and latency-tolerant solvers possible as configure-time plugins
into Trilinos.

• Co-Design Centers (4 funded projects): UTK/ICL participating in …
– CEED - Co-Design next-generation discretization software

and algorithms that will enable a wide range of FE applications

Software for Linear Algebra Targeting Exascale (SLATE)
Focused on Dense Linear Algebra Problems

Linear systems of equations Ax	=	b
Linear least squares min	‖	b	– Ax	‖2
Singular value decomposition (SVD) A	=	UΣVT

Eigenvalue value problems (EVP) Ax	=	λx

Dense (square, rectangular)

Band

But	first,	let’s	go	back	in	time.

‘76				‘77				‘78				‘79				‘80				’81				‘82				‘83				‘84				‘85				‘86				‘87				‘88				‘89				‘90				‘91				‘92				‘93				‘94				’95				‘96				‘97				‘98				‘99

Linpack
released	
(78)

Level	1	
BLAS	

started	(74)

Linpack
Project
Started	
(75)

’74	‘75

‘76				‘77				‘78				‘79				‘80				’81				‘82				‘83				‘84				‘85				‘86				‘87				‘88				‘89				‘90				‘91				‘92				‘93				‘94				’95				‘96				‘97				‘98				‘99

Linpack
released	
(78)

Level	1	
BLAS	

started	(74)

Linpack
Project
Started	
(75)

• 1974:	Effort	to	standardize	Basic	
Linear	Algebra	Subprograms	

• Basic	LA	vector	operations	
• Referred	to	now	as	Level	1	BLAS

• 1975:	LINPACK	Project	started
• Effort	to	produce	portable,	efficient	
linear	algebra	software	for	dense	
matrix	computations.

• 1976:	Vector	computers	in	use	for	
HPC

• 1977:	DEC	VAX	system	in	common	
use

’74	‘75

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column
with Level 1
BLAS

Divide by
Pivot
row

Schur
complement
update
(Rank 1 update)

Main points
• Factorization column (zero) mostly sequential due to memory bottleneck
• Level 1 BLAS
• Divide pivot row has little parallelism
• OK on machines with excess memory bandwidth, but
• Too much data movement per step

Next Step

1984	- 1990
• Level	3	BLAS	standardization	started
• Level	2	BLAS	standard	published
• “Attack	of	the	Killer	Micros”,	Brooks	@	SC90
• Cache	based	&	SMP	machines
• Blocked	partitioned	algorithms	was	the	way	
to	go

• Reduce	data	movement;	today’s		buzzword	
“Communication	avoiding”

‘76				‘77				‘78				‘79				‘80				’81				‘82				‘83				‘84				‘85				‘86				‘87				‘88				‘89				‘90				‘91				‘92				‘93				‘94				’95				‘96				‘97				‘98				‘99

Linpack
released	
(78)

Unrolling	
Loops
Paper	
(79)

IJK	Paper
Level	2	BLAS	

started
EISPACK3

(84)

Netlib
MathWorks
Started	(84)

IEEE	754	
standard
(85)

Blocked	
Partitioned	
Algorithms

(89)

MPI	started
(91)

Level	2	
BLAS	
Publish
(88)

Level	3	
BLAS	
Publish
(90)

LAPACK	
Publish
(92)

Level	3	BLAS	
started
LAPACK	
started	
(87)

ScaLAPACK
started	
(93)

Level	1	
BLAS	

started	(74)

Linpack
Project
Started	
(75)

Level	1	
BLAS	

Published	
(79)

Unrolling	
Loops

Outer-level	
(83)

• LAPACK	Published
• ScaLAPACK started

’74	‘75

LAPACK Functionality

LAPACK Software
Jointly with UTK and UCB and Many Other Contributors
• First release in February 1992 (Silver Anniversary)
• Current: LAPACK Version 3.7.0 (Dec, 2017) ~2M LoC
• LICENSE: Mod-BSD, freely-available software package - Thus, it can be included in commercial

software packages (and has been). We only ask that proper credit be given to the authors.
• Public GITHub repository
• 4 Precisions: single, double, complex, double complex

• Considering 16-bit flpt version
• Multi-OS *nix, Mac OS/X, Windows
• Multi-build support (Make and Cmake)
• Reference BLAS and CBLAS
• LAPACKE: Standard C language APIs for LAPACK
• Prebuilt Libraries for Windows
• Extensive test suite
• Forum and User support: http://icl.cs.utk.edu/lapack-forum/
• Goal: bug free library – Since 2009, 165 bugs reported, only 11 pending correction

16

17

ScaLAPACK

§ Library of software dealing with dense
& banded routines

§ Distributed Memory - Message Passing
§ MIMD Computers and Networks of

Workstations
§ Clusters of SMPs
§ Data layout critical for performance

¨ Relies on LAPACK / BLAS and
BLACS / MPI

¨ Includes PBLAS (Parallel BLAS)

18

Programming Style
§ SPMD Fortran 77 using an object based design
§ Built on various modules

§ PBLAS Interprocessor communication & computation
§ BLAS
§ BLACS

§ MPI, PVM, IBM SP, CRI T3, Intel, TMC
§ Provides right level of abstraction.

§ Object based - Array descriptor
§ Contains information required to establish mapping

between a global array entry and its corresponding process
and memory location.

§ Provides a flexible framework to easily specify additional
data distributions or matrix types.

§ Currently dense, banded, & out-of-core
§ Using the concept of context

1/98 19

PBLAS
§ Parallel Basic Linear Algebra Subprograms for distributed-memory

MIMD computers
§ Do both the communication and computation, but done in phases.
§ Simplification of the parallelization: especially when BLAS-based,
§ Modularity: gives programmer larger building blocks,
§ Portability: machine dependencies are confined to the BLAS and

BLACS the computation and communication phases.
§ Global view of the matrix operands, allowing global addressing of

distributed matrices (hiding complex local indexing),
§ Fits with the distribution patterns for High Performance Fortran

(HPF)
§ Load balance maintained

20

BLACS – Basic Linear Algebra Communication Subprograms

§ A design tool, they are a conceptual aid in design and coding.
§ Associate widely recognized mnemonic names with

communication operations, improve
§ program readability,
§ self-documenting quality of the code.

§ Promote efficiency by identifying frequently occurring
operations of linear algebra which can be optimized on
various computers.

It allows the user to
§ create arbitrary groups of processes,
§ create multiple overlapping and/or disjoint grids,
§ isolate each process grid so that grids do not interfere with

each other.
BLACS context MPI communicator

21

PBLAS
§ Similar to the BLAS in functionality and naming.
§ Built on the BLAS and BLACS
§ Provide global view of matrix

CALL DGEXXX (M, N, A(IA, JA), LDA,...)

CALL PDGEXXX(M, N, A, IA, JA, DESCA,...)
§ Hides complex local indexing

[LAPACK]	subroutine	dgesv(n,	nrhs,	a(ia,ja),	lda,	ipiv,	b(ib,jb),	ldb,	info)	

input:

output:

From	LAPACK	to	ScaLAPACK

A B

n

n n

nrhs

i
p
i
v

n

n

n

L
U Xn

nrhs

i
p
i
v

n info

info

LAPACK	Data	layout

LAPACK	Data	layout

[LAPACK]	subroutine	dgesv(n,	nrhs,	a(ia,ja),	lda,	ipiv,	b(ib,jb),	ldb,	info)	

input:

output:

From	LAPACK	to	ScaLAPACK

n

n info

A11

A21

A31

A12

A22

A32

A13

A23

A33

n

B11

B21

B31

nrhs

ip1

ip2

ip3

n infoL21

L31

U12

L32

U13

U23 n

X11

X21

X31

ip1

ip2

ip3

nrhs

L11
U11

L22
U22

L33
U33

n

ScaLAPACK	Data	layout

ScaLAPACK	Data	layout

[LAPACK]	subroutine	dgesv(n,	nrhs,	a(ia,ja),	lda,	ipiv,	b(ib,jb),	ldb,	info)	
[ScaLAPACK]	subroutine	pdgesv(n,	nrhs,	a,	ia,	ja,	desca,	ipiv,	b,	ib,	jb,	descb,	info)
input:

output:

From	LAPACK	to	ScaLAPACK

n

n info

A11

A21

A31

A12

A22

A32

A13

A23

A33

n

B11

B21

B31

nrhs

ip1

ip2

ip3

n infoL21

L31

U12

L32

U13

U23 n

X11

X21

X31

ip1

ip2

ip3

nrhs

L11
U11

L22
U22

L33
U33

n

ScaLAPACK	Data	layout

ScaLAPACK	Data	layout

2D Block Cyclic Layout

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

M

N

MB
NB Matrix is MxN

Process grid is PxQ, P=2, Q=3
Blocks are MBxNB

P

Q

2D Block Cyclic Layout

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

MB
NB Matrix is MxN

Process grid is PxQ, P=2, Q=3
Blocks are MBxNB

2D Block Cyclic Layout

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

0 2 4

1 3 5

MB
NB Matrix is MxN

Process grid is PxQ, P=2, Q=3
Blocks are MBxNB

2D Block Cyclic Layout

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

0 2 4

1 3 5

0 2 4

1 3 5

2D Block Cyclic Layout

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4 0 2 4 0 2 4

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

2D Block Cyclic Layout

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4 0 2 4 0 2 4

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

2D Block Cyclic Layout

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4 0 2 4 0 2 4

0 2 4

3 5

0 2 4

1

3

5

0
2

4

1
3

5

0

2
4

1 3
5

0
2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0
0

1

0

1

0

1

0

1

0
0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

2D Block Cyclic Layout

3 5 1 3 5 1 3 5

2 4

3 5

0 2 4

1 3 5

0 2 4

1 3 5

2 4

3 5

0 2 4

1 3 5

0 2 4

1 3 5

2 4

3 5

0 2 4

1 3 5

0 2 4

1 3 5

2 4 0 2 4 0 2 4

3 5

2 4

3

5

2
4

3
5

2
4

3
5

2 4

5

4

5

4

5

4

5

4

5

4

5

4

5

4

5

4

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

2D Block Cyclic Layout

4

5

0 2 4

1 3 5

0 2 4

1 3 5

4

5

0 2 4

1 3 5

0 2 4

1 3 5

4

5

0 2 4

1 3 5

0 2 4

1 3 5

4 0 2 4 0 2 4

4

5

4

5

4

5

4

4

5

4

5

4

5

4

4

5

4

5

4

5

4

2

3

2

3

2

3

2

2

3

2

3

2

3

2

0

1

0

0

1

0

1

0

1

0

0

1

0

1

Matrix point of view Processor point of view

2D Block Cyclic Layout

1 3 5 1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4 0 2 4

5

4

5

4

5

4

5

4

5

4

5

4

3

2

3

2

3

2

3

2

3

2

3

2

1

0

0

1

0

1

1

0

0

1

0

1

Matrix point of view Processor point of view

2D Block Cyclic Layout
Matrix point of view Processor point of view

MB
NB Matrix is MxN

Process grid is PxQ, P=2, Q=3
Blocks are MBxNB

LAPACK Functionality

ScaLAPACK Functionality

Performance Issues with ScaLAPACK

• The major problem with ScaLAPACK is the lack of overlap of
computation and communication .

• Each phase done separately, bulk synchronous.
• Computation phase then a communication phase.
• All (most) processes compute then a communication phase (broadcast)
• This is how the PBLAS operate.

• No overlap, resulting in performance issues

• Need an “new” interface which allows computation and
communication to take place simultaneously, in an asynchronous
fashion.

38

Problems with Sca/LAPACK
software engineering

• Obsolete language (F77)
• Poor man’s object orientation (array descriptors)
• Manual generation of 4 precisions

• Hard to accommodate lower (e.g. half) or higher (e.g.
double-double)

• No convenience of memory allocation (e.g. workspaces)
• Hard to maintain with C/C++ educated personnel

Since LAPACK and ScaLAPACK

• A lot has changed
• Manycore and accelerators
• Use a different set of ideas to provide efficient use of underlying hardware

• PLASMA/DPLASMA
• MAGMA

40

PLASMA

https://bitbucket.org/icl/plasmahttp://icl.cs.utk.edu/plasma/

Dense linear algebra

linear systems of equations

linear least squares

singular value decomposition

eigenvalue problems (symmetric)

Ideally a replacement for LAPACK

Multicore CPUs

Xeon Phi

PLASMA – Original Software Stack when the Project Started

PLASMA – Software Stack

A.	YarKhan,	J.	Kurzak,	P.	Luszczek,	J.	Dongarra,	Porting	the	PLASMA	Numerical	Library	to	the	OpenMP	Standard,	International	Journal	of	Parallel	Programming,	1-22,	2016.	
DOI:	10.1007/s10766-016-0441-6

Parallelization	of	QR Factorization

Parallelize	the	update:
• Easy	and	done in	any	reasonable	software.
• This	is	the	2/3n3 term	in	the	FLOPs	count.
• Can	be	done	efficiently	with	LAPACK+multithreaded BLAS

-
dgemm

44

-

qr()

dgeqf2 + dlarft

dlarfb

V

R

A(1)

A(2)
V

R

U
pd

at
e

of
 th

e
re

m
ai

ni
ng

su

bm
at

rix
Pa

ne
l

fa
ct

or
iz

at
io

n

Fork - Join parallelism
Bulk Sync Processing

ØObjectives
Ø High utilization of each core
Ø Scaling to large number of cores
Ø Shared or distributed memory

ØMethodology
Ø Dynamic DAG scheduling
Ø Split phases task generation and execution
Ø Explicit parallelism/Implicit communication
Ø Fine granularity / block data layout

ØArbitrary DAG with dynamic scheduling

45

Cholesky
4 x 4

Fork-join
parallelism

PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

DAG scheduled
parallelism

Time

PLASMA – Tile Matrix Layout

enables dataflow scheduling
helps memory efficiency
simplifies communication

Translation	can	be	done	in	place,	in	a	parallel	and	cache	efficient	fashion.

LAPACK Layout Tile Layout

PLASMA – Tile Algorithms

CHOL()
CHOL()

Tile
Algorithm

LAPACK
Algorithm

PLASMA – Dataflow Scheduling

Exploit parallelism
Balance load
Maximize data locality

SPOTRF

STRSMSTRSMSTRSM STRSM

SPOTRF

SGEMM SSYRKSGEMM SGEMMSSYRKSGEMM SGEMMSSYRK SGEMM SSYRK

STRSMSTRSM STRSM

SPOTRF

SSYRKSGEMM SGEMMSSYRK SGEMM SSYRK

SSYRK

STRSM

SSYRK

STRSM

SPOTRF

SGEMM

SSYRK

STRSM

SPOTRF

PLASMA OpenMP – Inverse of the Variance-Covariance Matrix

PLASMA Cholesky inversion using OpenMP
Intel Xeon E5-2650 v3 (Haswell) 2.3GHz 20 cores

tiles of size 224 x 224, matrix of size 13 x 13 tiles (2912 x 2912)

Factor matrix A = LLT Compute inverse of factor L Computer A-1 = L-TL-1

PLASMA Cholesky inversion using OpenMP
Intel Xeon E5-2650 v3 (Haswell) 2.3GHz 20 cores

tiles of size 224 x 224, matrix of size 13 x 13 tiles (2912 x 2912)

PLASMA OpenMP – Inverse of the Variance-Covariance Matrix

MAGMA – Focus on Using Accelerators

Dense linear algebra for accelerators

NVIDIA using CUDA

AMD using OpenCL

Intel Xeon Phi

Hybrid, CPU-GPU implementations

single-GPU

multi-GPU

OO-GPU-memory

Managing data transfers

Some batched routines

Some sparse solvers

MAGMA Routines Depending on where Matrix Located

Suffix Example Description

none magma_dgesv hybrid CPU/GPU routine – matrix in CPU memory

_m magma_dgesv_m hybrid CPU/multi-GPU routine – matrix in CPU memory

_gpu magma_dgesv_gpu hybrid CPU/GPU routine – matrix in GPU memory

_mgpu magma_dgesv_mgpu hybrid CPU/multi-GPU routine – matrix distributed across GPU memories

SLATE – Software for Linear Algebra Targeting Exascale

Ø Target Hardware DOE Exascale systems, as well as pre-Exascale
Ø Bring the best ideas of LAPACK, ScaLAPACK, PLASMA & MAGMA
Ø Goals

Ø Efficiency – to run as fast as possible (close to theoretical peak);
Ø Scalability – as the problem size and number of processors grow;
Ø Reliability – including error bounds and rigorous LAPACK-derived testing

suites;
Ø Portability – across all important parallel machines (as described above);
Ø Flexibility – so users can construct new routines from well-designed parts;
Ø Ease of use – by making the interfaces look as similar as possible to LAPACK

and ScaLAPACK.

53

SLATE: New Abstraction Layer
standardized components

Basically leverage the accomplishments of the last decade in modernization of the MPI
and OpenMP standards, and the appearance of OpenCL and OpenACC, to create an
abstraction layer suitable for supporting ScaLAPACK workloads and beyond.

• MPI 3
• Non-blocking collectives
• Neighborhood collectives
• Improved one-sided communication
• Thread friendliness

• Thread-safe probe and receive
• OpenMP 4 / OpenACC

• Accelerator offload
• With memory management

• Dynamic task scheduling
• With data dependencies tracking

• OpenCL / OpenACC
• Portable accelerator kernels

SLATE: New Abstraction Layer
programing frameworks

Leverage emerging programming frameworks for scheduling tasks to large scale machines
with multicores, accelerators and complex memory systems.
Perhaps plug into different run-time systems

• Runtime will provide…
• Dynamic task scheduling

• Mutithreading
• Accelerator offload

• Accelerator memory management
• Basically a cache model with LRU policy

• Communication hiding
• Asynchronous message passing
• Asynchronous PCI DMAs (host-device)

• Separation of concerns
• Flexible task assignment
• Flexible data assignment

• PaRSEC (UTK), StarPU (INRIA), Kokkos (SNL), Legion (Stanford),…

SLATE: Adopt C++ at the ScaLAPACK Level
algorithmic level

• Natural encapsulation
• Intuitive objects
• More coding safeties

• Natural polymorphism
• Allow for multiple data layouts with no code duplication

• C++ templating
• Easily deal with multiple precisions (Z, C, D, S)
• Allow for adoption of half and extended
• Cut the code base by 4x.

• Easily deal with dynamic memory allocation
• Exceptions

• Much more compact error handling
• Provide classic (C, F77) interfaces if required

Ø DOE ECP
Ø Two systems, one in

2021 and another in
2023

Ø First: “advanced”
architecture

Ø Second: “capable”
architecture

57

Pre & Post Exascale Systems

Task-based programming
• Focus on data dependencies, data

flows, and tasks
• Don’t develop for an architecture

but for a portability layer
• Let the runtime deal with the

hardware characteristics
• But provide as much user control as possible

• StarSS, StarPU, Swift, Parallex,
Quark, Kaapi, DuctTeip, and
PaRSEC

Ap
p

A

Data
Distrib. Sched. Comm

Memory
Manager

Heterogeneity
ManagerRu

nt
im

e

Ap
p

B

PaRSEC Runtime System Inputs

59

• Runtime System:
• Manages local parallelism
• Schedules tasks on cores and on

accelerators
• Manages memory
• Adapts the execution to the local

hardware (NUMA)
• Moves data between nodes

transparently and asynchronously

PaRSEC
Runtime

Dataflow
(any way to describe data

dependencies between tasks: what
must happen before what, and on

what data)

Data and its
distribution

Kernels
(Code that modifies

Data)

Dataflow with Runtime Scheduling
divide and orchestrate

61

At the Node Level

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

0

1 2

3 4 5

6

7

8

9

Cholesky Factorization (3x3)
for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

0

Inserting 1 x POTRF

for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

0

1 2

Inserting 2 x TRSM

for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

0

1 2

3 4 5

Inserting 2 x HERK + 1 x GEMM

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2
0

1 2

3 4 5
Potrf-0

Ready Task Queue

POTRF is ready to execute

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Potrf-0

Ready Task Queue

0

1 2

3 4 5

✗

POTRF executes & leaves DAG

Ready Task Queue

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Trsm-1 Trsm-2

1 2

3 4 5

TRSM tasks become ready

Potrf-0

0

1 2

3 4 5

Superscalar task execution

Tasks can be scheduled
as soon as they
become ready

for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

6

Tasks are inserted in the
DAG as soon as

they are discovered

PaRSEC does not wait for the whole DAG to be built
before initiating the execution of tasks.

for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

Multi-node & Data placement

0

1 2

3 4 5

6

7

8

9

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Data distribution
between nodes
(user defined)

for(k = 0; k < total; k++) {

parsec_insert_task("Potrf”, TILE_OF(A, k, k), INOUT | AFFINITY);

for(m = k+1; m < total; m++) {
parsec_insert_task("Trsm”,

TILE_OF(A, k, k), INPUT,
TILE_OF(A, m, k), INOUT | AFFINITY);

}
for(m = k+1; m < total; m++) {

parsec_insert_task("Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for(n = m+1; n < total; n++) {
parsec_insert_task(“Gemm”,

TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);

}
}

}

Task affinity follows data placement

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Data distribution
between nodes
(user defined)

0

1 2

3 4 5

6

7

8

9

Node 0
Node 1Node 1

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

0

1 2

3 4 5

6

7

8

9

DAG building in distributed memory
Data distribution
between nodes
(user defined)

Complete DAG

0

1

3 4

6

7

Node 1Node 1

stub DAG
entries for

remote tasks

0

2

4 5

7

8

9

6

1

Node 0

stub DAG
entries for

remote tasks

On a given node, PaRSEC ignores remote
tasks, except for immediate

predecessors and children of local tasks.

Implicit message passing

0

2

4 5

7

8

9

0

1

3 4

6

7

6

1

Node 0Node 1Node 1

PaRSEC knows which node to exchange data with
(due to the stubs) and does so

without user involvement.

Asynchronous network
data transfers

performed automatically
by PaRSEC

0

1 2

3 4 5

6

7

8

9

Complete DAG

Resilience
automatic error recovery

A fault propagates in the system
according to data dependencies.

If the original data can be recovered,

automatic fault recovery is possible.

SLATE Features
Ø Runtime interface

Ø Use Open-MP
Ø Be able to plug into other systems

Ø PaRSEC, Legion, Darma, StarPU, …
Ø Statically scheduled on across nodes; dynamically schedule within node

Ø Tiled Algorithms
Ø Runtime scheduling based on dataflow
Ø Runtime dependency tracking

Ø Plug into the different runtime systems

Ø Data distribution as in ScaLAPACK
Ø Given the layout and arrangement of processes communication is understood

Ø Task based parallelism as in PLASMA
Ø DAG based to allow overlap of computation and communication

Ø Ability to use accelerators as in MAGMA
Ø Hybrid computing using the runtime system

Today: Integration with DOE ECP Applications
Ø Underdevelopment and design
Ø xSDK – Coordination of NLA libraries across DOE
Ø PEEKS – Iterative methods
Ø Working with the ECP applications, i.e. Chemistry: diagonalization
Ø Link seamlessly and work efficiently when used as LAPACK and/or

ScaLAPACK replacement
Ø European Project

Ø NLAFET H2020

76

