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Outline for the Talk

* What was going on before
* What’s the current situation
* What’s planned for exascale

But first, a word about the DOE Exascale Computing Program



DOE ECP has formulated a holistic approach that uses
co-design and integration to achieve capable exascale
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The DOE ECP Plan of Record

« A 7-year project that follows the holistic/co-design approach, which
runs through 2023 (including 12 months schedule contingency)

— To meet the ECP goals

« Enable an initial exascale system based on advanced architecture
and delivered in 2021

« Enable capable exascale systems, based on ECP R&D, delivered in
2022 and deployed in 2023 as part of an DOE facility upgrade

 Acquisition of the exascale systems is outside of the ECP scope, will
be carried out by DOE facilities

5 Exascale Computing Project, www.exascaleproject.org
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Software Project
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ECP at UTK/ICL Involved in 7 Projects

» Software Technology (35 funded projects); UTK/ICL is participating in...

SLATE - provides SOA algorithmic and technology innovation in dense
linear algebra software

EXA-PAPI - provides tool designers and application engineers with a consistent
interface and methodology for the use of low-level performance counter
hardware found across the system

PaRSEC - provides a runtime component to dynamically execute on
heterogeneous distributed systems

OMPI — provides MPI for exascale through improvements in scalability, capability,
and resilience.

XSDK - provides interoperability across existing numerical libraries hypre, PETSc,
SuperlL U, Trilinos, MAGMA, PLASMA and DPLASMA

Peeks — provides interfaces and fundamental sparse kernels to make future GPU
solvers and latency-tolerant solvers possible as configure-time plugins
into Trilinos.

» Co-Design Centers (4 funded projects): UTK/ICL participating in ...

7 7Exascale Computing Project, www.exascaleproject.org

CEED - Co-Design next-generation discretization software
and algorithms that will enable a wide range of FE applications
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Jg Software for Linear Algebra Targeting Exascale (SLATE)
| Focused on Dense Linear Algebra Problems

¢ Linear systems of equations Ax=Db

¢ Linear least squares min || b - Ax ||,

¢ Singular value decomposition (SVD) A=UxVT

¢ Eigenvalue value problems (EVP) Ax = Ax

« Dense (square, rectangular)

¢ Band




But first, let’s go back in time.
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Level 1 e 1974: Effort to standardize Basic

BLAS
started (74)

Linear Algebra Subprograms
* Basic LA vector operations
* Referred to now as Level 1 BLAS

* 1975: LINPACK Project started

* Effort to produce portable, efficient
linear algebra software for dense
matrix computations.

* 1976: Vector computers in use for
HPC

poject (1) *1977: DEC VAX system in common
use o
LINPAES

7475 ‘76 ‘77 ‘78 ‘79

ACM SIGNUM Newsletter
Volume 8 Issue 4, October 1973 ¢

Published in:

- Newsletter
ACM SIGNUM Newsletter archive
ACM New York, NY, USA
table of contents ISSN:0163-5778

IMPROVING THE EFFICIENCY OF PORTABLE
SOFTWARE FOR LINEAR ALGEBRA

R. J. Hanson
(Washington State Univ.)
F. T. Krogh
(Jet Propulsion Lab)
C. L. Lawson
(Jet Propulsion Lab)

In algorithms for linear algebraic computations
there are a fairly small number of basic operations
which are generally responsible for a significant




The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture
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Factor column Divide by Schur Next Step
with Level 1 Pivot complement
BLAS row update

(Rank 1 update)
Main points

* Factorization column (zero) mostly sequential due to memory bottleneck

* Level 1 BLAS

» Divide pivot row has little parallelism

* OK on machines with excess memory bandwidth, but
* Too much data movement per step




1984 - 1990

* Level 3 BLAS standardization started
Level 2 BLAS standard published

Cache based & SMP machines

Blocked partitioned algorithms was the way

to go

* Reduce data movement; today’s buzzword
“Communication avoiding”
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Factor panel Triangular Schur complement  Next Step
(Level 1,2 BLAS) Update update

(Level 3 BLAS) (Level 3BLAS)

Why Higher Level BLAS?
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Level 1
IEEE 754
BLAS BLAS
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LAPACK Functionality

Type of Problem

Linear system of equations SV
Linear least squares problems LLS
Linear equality-constrained least squares problem LSE
General linear model problem GLM
Symmetric eigenproblems SEP
Nonsymmetric eigenproblems NEP
Singular value decomposition SVD
Generalized symmetric definite eigenproblems GSEP
Generalized nonsymmetric eigenproblems GNEP

Generalized (or quotient) singular value decomposition GSVD (QSVD)



Ly e 1 | 4

LAPACK Software
Jointly with UTK and UCB and Many Other Contributors

« First release in February 1992 (Silver Anniversary)
« Current: LAPACK Version 3.7.0 (Dec, 2017) ~2M LoC

« LICENSE: Mod-BSD, freely-available software package - Thus, it can be included in commercial
software packages (and has been). We only ask that proper credit be given to the authors.

« Public GITHub repository

4 Precisions: single, double, complex, double complex
» Considering 16-bit flpt version

¢ Multi-OS *nix, Mac 0S/X, Windows

« Multi-build support (Make and Cmake)

» Reference BLAS and CBLAS

« LAPACKE: Standard C language APIs for LAPACK

» Prebuilt Libraries for Windows

« Extensive test suite

« Forum and User support: http://icl.cs.utk.edu/lapack-forum/

* Goal: bug free library - Since 2009, 165 bugs reported, only 11 pending correction

$ICL  RATENNESSEE |
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" ScaLAPACK

+ Relies on LAPACK / BLAS and
BLACS / MPI

= Library of software dealing with dense
& banded routines ¢ Includes PBLAS (Parallel BLAS)

= Distributed Memory - Message Passing

= MIMD Computers and Networks of
WOf'kS"'GTionS o| 1|2 |3 fot 2Bl 1At 2Bion sk oot

= Clusters of SMPs
= Data layout critical for performance
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- Programming Style

= SPMD Fortran 77 using an object based design

= Built on various modules
= PBLAS Interprocessor communication & computation

= BLAS
= BLACS

= MPI, PVM, IBM SP, CRI T3, Intel, TMC
= Provides right level of abstraction.

= Object based - Array descriptor

= Contains information required to establish mapping

ScaLAPACK
PBLAS

between a global array entry and its corresponding process

and memory location.

= Provides a flexible framework to easily specify additional
data distributions or matrix types.

= Currently dense, banded, & out-of-core
= Using the concept of context

18
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»

“" PBLAS

1/98

Parallel Basic Linear Algebra Subprograms for distributed-memory
MIMD computers

Do both the communication and computation, but done in phases.
Simplification of the parallelization: especially when BLAS-based,
Modularity: gives programmer larger building blocks,

Portability: machine dependencies are confined to the BLAS and
BLACS the computation and communication phases.

Global view of the matrix operands, allowing global addressing of
distributed matrices (hiding complex local indexing),

Fits with the distribution patterns for High Performance Fortran
(HPF)

Load balance maintained

19
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o BLACS — Basic Linear Algebra Communication Subprograms

= A design tool, they are a conceptual aid in design and coding.
= Associate widely recognized mnemonic names with

communication operations, improve
= program readability,
= self-documenting quality of the code.

Promote efficiency by identifying frequently occurring

operations of linear algebra which can be optimized on
various computers.

It allows the user to

create arbitrary groups of processes,
create multiple overlapping and/or disjoint grids,

isolate each process grid so that grids do not interfere with
each other.

BLACS context — MPI communicator

20
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- PBLAS

= Similar to the BLAS in functionality and naming.

= Built on the BLAS and BLACS

= Provide global view of matrix
CALL DGEXXX (M, N, A(IA, JA), LDA,...)

a

CALL PDGEXXX( M, N, A, TIA, JA, DESCA,...)
= Hides complex local indexing

JA
| N

N

y v AUAIA+M-1, JAJA+N-1)

21



From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv( n, nrhs, a(ia,ja), Ida, ipiv, b(ib,jb), Idb, info )

input:

LAPACK Data layout

info
n n 1l
output:
s nrhs N LAPACK Data layout
n info
n X i




From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv( n, nrhs, a(ia,ja), Ida, ipiv, b(ib,jb), Idb, info )

ScalLAPACK Data layout

ip, info

ip, ScalLAPACK Data layout




From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv( n, nrhs, a(ia,ja), Ida, ipiv, b(ib,jb), Idb, info )
[ScaLAPACK] subroutine pdgesv( n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info )

ScalLAPACK Data layout

ip, info

ip, ScalLAPACK Data layout




2D Block Cyclic Layout

Matrix point of view Processor point of view
N Q
000 2122 4144
000 2122 41414
000 2122 4144
M 000 2122 4144 A
000 2122 4144
11111 3133 5/5|5
11111 3133 5/5]|5
11111 3133 5/5]|5
11111 3133 5/5]|5
NB Matrix is MxN

Process grid is PxQ, P=2, Q=3
Blocks are MBxNB




2D Block Cyclic Layout

Matrix point of view

Processor point of view

000 2122 4144
000 2122 41414
000 2122 4144
000 2122 4144
000 2122 4144
11111 3133 5/5]|5
11111 3133 5/5]|5
11111 3133 5/5]|5
11111 3133 5/5]|5
NB Matrix is MxN
IMB Process grid is PxQ, P=2, Q=3
Blocks are MBxNB




2D Block Cyclic Layout

Matrix point of view Processor point of view
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2D Block Cyclic Layout
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2D Block Cyclic Layout
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2D Block Cyclic Layout
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2D Block Cyclic Layout
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2D Block Cyclic Layout
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2D Block Cyclic Layout
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2D Block Cyclic Layout

Matrix point of view Processor point of view
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2D Block Cyclic Layout

Matrix point of view Processor point of view
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LAPACK Functionality

Type of Problem

Linear system of equations SV
Linear least squares problems LLS
Linear equality-constrained least squares problem LSE
General linear model problem GLM
Symmetric eigenproblems SEP
Nonsymmetric eigenproblems NEP
Singular value decomposition SVD
Generalized symmetric definite eigenproblems GSEP
Generalized nonsymmetric eigenproblems GNEP

Generalized (or quotient) singular value decomposition GSVD (QSVD)



ScaLAPACK Functionality

Type of Problem

Linear system of equations SV
Linear least squares problems LLS

L i trainadloast ol LSE
—Generallinearmodelproblem——————— GIM

Symmetric eigenproblems SEP
Nonsymmetric eigenproblems NEP
Singular value decomposition SVD

. : . e
—Generatized-symmetricdefiniteeigenprobltems GSEP
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}Performance Issues with ScaLAPACK

* The major problem with ScaLAPACK is the lack of overlap of
computation and communication .

« Each phase done separately, bulk synchronous.

+ Computation phase then a communication phase.
« All (most) processes compute then a communication phase (broadcast)
« This is how the PBLAS operate.

* No overlap, resulting in performance issues

* Need an “new” interface which allows computation and
communication to take place simultaneously, in an asynchronous
fashion.

£1CL
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Problems with Sca/LAPACK

software engineering

* Obsolete language (F77)
* Poor man’s object orientation (array descriptors)
* Manual generation of 4 precisions
* Hard to accommodate lower (e.g. half) or higher (e.g.
double-double)
* No convenience of memory allocation (e.g. workspaces)
* Hard to maintain with C/C++ educated personnel

P a7 |} XA\ AW Y




vFSm ce LAPACK and ScaLAPACK

A lot has changed

« Manycore and accelerators
« Use a different set of ideas to provide efficient use of underlying hardware

« PLASMA/DPLASMA
+ MAGMA

£1CL
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PLASMA

¢ Dense linear algebra

¢ linear systems of equations

¢ linear least squares

¢ singular value decomposition s

b

¢ eigenvalue problems (symmetric) .

6]

¢ Ideally a replacement for LAPACK N

¢ Multicore CPUs
| ¢ Xeon Phi

http://icl.cs.utk.edu/plasma/

B
]

@ Atlassian, Inc.

Projects ~

Repositories ~  Snippets ~

ICL / PLASMA / plasma

Overview 4, SSH~v ssh://hg@bitbucket.org/icl/plasma 2 Share © ~
1 1 . . x
Last updated 3 hours ago Invite users to this repo
Language C Branch Tag
oses vl i ook
4 7
Forks Watchers

# Edit README

| A B U
| ANV Y
W VA

AN

Parallel Linear Algebra Software for Multicore Architectures

L of (us), of (UK), L of
Colorado Denver (US), University of California, Berkeley (US)

PLASMA is a software package for solving problems in dense linear algebra using
multicore processors and Xeon Phi coprocessors. PLASMA provides implementations of

using cutting-edge task i PLASMA
currently offers a collection of routines for solving linear systems of equations, least
squares problems, eigenvalue problems, and singular value problems.

tate-of-the-art

PLASMA is in the process of porting form QUARK to OpenMP. At the same time, it is
moving from its ICL SVN repository to this Bitbucket Mercurial repository. The content of
this repository reflects the progress of the transition. Before the transition is complete, the
old releases of PLASMA are available at http:/icl.cs.utk.edu/plasma/.

Recent activity

a

1 commit
Pushed to icl/plasma
2935588 POTRF added (implementation a...

Pedro Valero-Lara - 3 hours ago

1 commit
Pushed to icl/plasma
817adad Fixed some style errors for herk a...

Pedro Valero-Lara - yesterday

1 commit
Pushed to icl/plasma
121d207 core_zsymm.c added

Pedro Valero-Lara - yesterday

Add trsm and the associated testing ro...
Pull request #5 updated in icl/plasma

https://bitbucket.org/icl/plasma

£1CL
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PLASMA - Original Software Stack when the Project Started

S
E
=2
§ m
<
%

POSIXThread
I E=s
g ‘ LAPACKE
-~ cBLAS
= ‘ (CILAPACK
5
E
5 BLAS

CICL  RATENNESSEE g
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PLASMA - Software Stack

=
=
=
=
=
=
L
[an]
<
=
77}
< core BLAS
o
—
= LAPACKE
=
= CBLAS
T ‘ (C)LAPACK
[&]
@
£
5 BLAS
(&)
A. YarKhan, J. Kurzak, P. Luszczek, ]. Dongarra, Porting the PLASMA Numerical Library to the OpenMP Standard, International Journal of Parallel Programming, 1-22, 2016.
DOI: 10.1007/s10766-016-0441-6




Parallelization of QR Factorization

Parallelize the update: dgemm
* Easy and done in any reasonable software. e
* This is the 2/3n3 term in the FLOPs count. -4_ - -I
* Can be done efficiently with LAPACK+multithreaded BLAS

NN\ /S

ANV

dgeqf2 + dlarft

I--¥ !

factorization

Update of the remaining Panel

PAARNN

l l l l l Fork - Join parallelism
Bulk Sync Processing
dlarfb .
A |
B-818 )

NI

w | ]

submatrix

gl e
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PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

>Objectives
> High utilization of each core Cholesky
> Scaling to large number of cores 4x4
> Shared or distributed memory

>Methodology

> Dynamic DAG scheduling

> Split phases task generation and execution
> Explicit parallelism/Implicit communication
> Fine granularity / block data layout

»>Arbitrary DAG with dynamic scheduling

i%t% -3 '% :g-?% :E_—g - Fork-join
- = E¥ == & = — _ ==={ parallelism
R VOERRE

Ty

T

o
T DAG scheduled
parallelism

T
=
-
-
-
o
-

45
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PLASMA - Tile Matrix Layout

LAPACK Layout Tile Layout

> UL VAR

Translation can be done in place, in a parallel and cache efficient fashion.

¢ enables dataflow scheduling
¢ helps memory efficiency

¢ simplifies communication

KNOXVILLE

L£1CL p o] TENNESSEE
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PLASMA - Tile Algorithms

>
| APACK D < cHOL( D\) Til
11e
N CHO/L(E) Algorithm =: % ? t Algorithm
I‘D O</A
— 1h g8
-~ -
¢ _ k‘" B - . .
< -00
< ]-00
H<-00

£ 1CL
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PLASMA - Dataflow Scheduling

¢ Exploit parallelism
¢ Balance load

¢ Maximize data locality

c Ic TTTTTTTTTTTTTTT =
B SEmEEs el KNOXVILLE
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PLASMA OpenMP - Inverse of the Variance-Covariance Matrix

PLASMA Cholesky inversion using OpenMP
Intel Xeon E5-2650 v3 (Haswell) 2.3GHz 20 cores
tiles of size 224 x 224, matrix of size 13 x 13 tiles (2912 x 2912)

T T
IIIIIIIIIIIIIII'I]:‘ED
N S N A v 6 v
N I T 7 [T T 1T T 11
5 v v v
I I I I o
I I A [T TTTT1
[TTTTTTTT TTTTTT]
CCTTTTTTTTITT [ ITTITTTTT1100 O
[T TTTTTTT] LI T T TTTT]
I N I | S I I I |
N A A v
[T T T T IT T ITT T T T T TT]
[TTTTTIT T T T T I T T ITTTT T TIITT]

8 I v
A I I I A

Factor matrix A = LLT Compute inverse of factor L Computer A1=LTL1

THE UNIVERSITY OF

P @l TENNESSEE

KNOXVILLE
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PLASMA OpenMP - Inverse of the Variance-Covariance Matrix
\

PLASMA Cholesky inversion using OpenMP
Intel Xeon E5-2650 v3 (Haswell) 2.3GHz 20 cores
tiles of size 224 x 224, matrix of size 13 x 13 tiles (2912 x 2912)

o
IIIIIIIIIIIIIIIIIIIIII:‘
| e

[
[TTTT T TT 1 I TTTTT]
IIIIIIIIIIIIII I ITTIITTT 1100 O

I ——
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FEATURES AND SUPPORT

MAGMA - Focus on Using Accelerators » MAGMA 2.2 for CUDA
» cIMAGMA 1.4 ror OpenCL
¢ Dense linear algebra for accelerators » MAGMA MIC 1.4 ror Intel Xeon Phi
¢ NVIDIA using CUDA cUDA openct xlnt phi
¢ AMD using OpenCL () ([ ] @ Linear system solvers
o [ ] @ Eigenvalue problem solvers
¢ Intel Xeon Phi \‘ o o Auxiliary BLAS
. . . . . . [} Batched LA
¢ Hybrid, CPU-GPU implementations i
M ® @® SparselA
(%) single-GPU ® @ @ CPUlnterface
. BEERS
¢ multi-GPU GPU o o @® GPUInterface
V () () @ Multiple precision support
¢ OO-GPU-memory () Non-GPU-resident factorizations
' Managing data transfers Critical Path o ([ ] @® Multicore and multi-GPU support
o ([ @® LAPACK testing
¢ Some batched routines o © ® L
¢ Some Sparse solvers o ® Windows
o [ ] Mac 0S

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE
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MAGMA Routines Depending on where Matrix Located

Suffix Example Description
‘ none magma_dgesv hybrid CPU/GPU routine — matrix in CPU memory
‘ _m magma_dgesv_m hybrid CPU/multi-GPU routine — matrix in CPU memory
_gpu magma_dgesv_gpu hybrid CPU/GPU routine — matrix in GPU memory
_mgpu magma_dgesv_mgpu hybrid CPU/multi-GPU routine — matrix distributed across GPU memories

CICL s
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SLATE — Software for Linear Algebra Targeting Exascale

> Target Hardware DOE Exascale systems, as well as pre-Exascale

> Bring the best ideas of LAPACK, ScaLAPACK, PLASMA & MAGMA

> Goals
> Efficiency - to run as fast as possible (close to theoretical peak):
> Scalability - as the problem size and number of processors grow;

> Reliability - including error bounds and rigorous LAPACK-derived testing
suites;

> Portability - across all important parallel machines (as described above);
> Flexibility - so users can construct new routines from well-designed parts:

> Ease of use - by making the interfaces look as similar as possible to LAPACK
and ScalLAPACK.
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JB SLATE: New Abstraction Layer
f

standardized components

i Basically leverage the accomplishments of the last decade in modernization of the MPI
and OpenMP standards, and the appearance of OpenCL and OpenACC, to create an

abstraction layer suitable for supporting ScaLAPACK workloads and beyond.

* MPI3
* Non-blocking collectives
* Neighborhood collectives
* |Improved one-sided communication
* Thread friendliness
* Thread-safe probe and receive
* OpenMP 4 / OpenACC
* Accelerator offload
*  With memory management
* Dynamic task scheduling
* With data dependencies tracking
* OpenCL / OpenACC
* Portable accelerator kernels

CICL iR |
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JB SLATE: New Abstraction Layer
f

programing frameworks

i Leverage emerging programming frameworks for scheduling tasks to large scale machines
with multicores, accelerators and complex memory systems.
Perhaps plug into different run-time systems

* Runtime will provide...
* Dynamic task scheduling
e Mutithreading
* Accelerator offload
* Accelerator memory management
* Basically a cache model with LRU policy
e Communication hiding
* Asynchronous message passing
* Asynchronous PCI DMAs (host-device)
* Separation of concerns
* Flexible task assignment
* Flexible data assignment
* PaRSEC (UTK), StarPU (INRIA), Kokkos (SNL), Legion (Stanford),...

CICL iR |
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J& SLATE: Adopt C++ at the ScaLAPACK Level
f

algorithmic level

.
i * Natural encapsulation

* Intuitive objects
* More coding safeties
e Natural polymorphism
* Allow for multiple data layouts with no code duplication
e C++ templating
» Easily deal with multiple precisions (Z, C, D, S)
* Allow for adoption of half and extended
e Cut the code base by 4x.
* Easily deal with dynamic memory allocation
* Exceptions
* Much more compact error handling
* Provide classic (C, F77) interfaces if required

AN RNW



Exascale Applications

Integration and Co-Design

Domain Software
Libraries & Solvers

Legacy Interfaces

SLATE Software Stack

> DOE ECP

System Software & Libraries

OpenMP MPI

BLAS (CuBLAS, MKL, OpenBLAS, ESSL)

Pre & Post Exascale Systems

Aurora

Summit

Sierra

> Two systems, one in
2021 and another in
2023

> First: “advanced”
architecture

> Second: “capable”
architecture
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App B

flows, and tasks
« Don’t develop for an architecture
hardware characteristics
' * But provide as much user control as possible
I . StarSS, StarPU, Swift, Parallex,
Manager Manager

Runtime

Task-based programming
» Focus on data dependencies, data
=
but for a portability layer
» Let the runtime deal with the
Quark, Kaapi, DuctTeip, and
g, PaRSEC

((((((((((




PaRSEC Runtime System Inputs

Dataflow

(any way to describe data
dependencies between tasks: what
must happen before what, and on
what data)

Data and its PaRSEC
distribution Runtime
N

Kernels

(Code that modifies
Data)

* Runtime System:
« Manages local parallelism

« Schedules tasks on cores and on
accelerators

« Manages memory

« Adapts the execution to the local
hardware (NUMA)

« Moves data between nodes
transparently and asynchronously
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divide and orchestrate

cror- Dataflow with Runtime Scheduling

Domain
Specific

Extensions

Parallel

Hardware

Hierarchies

Compact Dynamic Discovered i
v Representation - PTG Representation - DTG
o Data Crnninlissilil
é  Scheduling Data Tasks "~ Kernels
v Movement
A
Movement
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At the Node Level
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Cholesky Factorization (3x3)

0,0 0;1 072
for( k = 0; k < total; k++ ) { 1011112
parsec_insert_task( "Potrf”, TILE OF(A, k, k), INOUT | AFFINITY); 20121122

for( m = k+1; m < total; mt++ ) {
parsec_insert_task( "Trsm”,

TILE OF(A, k, k), INPUT,
TILE OF(A, m, k), INOUT | AFFINITY);

}
for( m = k+1; m < total; m++ ) {
parsec_insert_task( "Herk”,
TILE OF(A, m, k),
TILE OF(A, m, m),

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemm”,
TILE OF(A, n,
TILE OF(A, m,
TILE OF(A, n,

INPUT,
INOUT | AFFINITY);

k), INPUT,
k), INPUT,
m), INOUT | AFFINITY);
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Inserting 1 x POTRF

for( k = 0; k < total; k++ ) {

X 0102
1,0

1,11 1,2

parsec_insert_task( "Potrf”, TILE OF(A, k, k), INOUT | AFFINITY); 20121122
7 ’ ’

for( m = k+1; m < total; mt++ ) {
parsec_insert_task( "Trsm”,

TILE OF(A, k, k), INPUT,
TILE OF(A, m, k), INOUT | AFFINITY);
}

for( m = k+1; m < total; m++ ) {
parsec_insert_task( "Herk”,
TILE OF(A, m, k), INPUT,
TILE OF(A, m, m), INOUT | AFFINITY);

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemm”,
TILE OF(A, n, k), INPUT,
TILE OF(A, m, k), INPUT,
TILE OF(A, n, m), INOUT | AFFINITY);




Inserting 2 x TRSM

for( k = 0; k < total; k++ ) {

parsec_insert_task( "Potrf”, TILE OF(A, k, k), INOUT | AFFINITY);

}

for( m = k+1; m < total; mt+ ) {

parsec_insert_task( "Trsm”,

TILE OF(A, k, k), INPUT,
TILE OF(A, m, k), INOUT | AFFINITY);

for( m = k+1; m < total; m++ ) {

parsec_insert_task( "Herk”,
TILE OF(A, m, k),
TILE OF(A, m, m),

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemm”,
TILE OF(A, n,
TILE OF(A, m,
TILE OF(A, n,

INPUT,
INOUT | AFFINITY);

k), INPUT,
k), INPUT,
m), INOUT | AFFINITY);

ONeN O,1

1,0 il

1,2

2,0 2!

2,2




Inserting 2 x HERK + 1 x GEMM

for( k = 0; k < total; k++ ) {

parsec_insert_task( "Potrf”, TILE OF(A, k, k), INOUT | AFFINITY);

for( m = k+1; m < total; mt++ ) {
parsec_insert_task( "Trsm”,
TILE OF(A, k, k), INPUT,
TILE OF(A, m, k), INOUT | AFFINITY);

}
for( m = k+1; m < total; mt+ ) {
parsec_insert_task( "Herk”,
TILE OF(A, m, k), INPUT,
TILE OF(A, m, m), INOUT | AFFINITY);

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemm”,
TILE OF(A, n, k), INPUT,
TILE OF(A, m, k), INPUT,
TILE OF(A, n, m), INOUT | AFFINITY);

icL>or




POTREF is ready to execute

0,0]01]0,2
T~ 1,0 11|12
2012122

Ready Task Queue

PaRSEC Scheduler




POTRF executes & leaves DAG

0,0

0,1

0,2

1,0

1,1

1,2

2,0

21

2,2

Ready Task Queue

PaRSEC Scheduler

Potrf-O




TRSM tasks become ready

0,0

0,1

0,2

@ ask Queue

1,0

1,1

1,2

—

Trsm 1 Trsm-2

PaRSEC Scheduler

R

2,0

21

2,2




Superscalar task execution

PaRSEC does not wait for the whole DAG to be built
before initiating the execution of tasks.

Tasks can be scheduled
as soon as they
become ready

Tasks are inserted in the
DAG as soon as
they are discovered

PaRSEC Scheduler

for( k = 0; k < total; k++ ) {
parsec, _insert_task( "Potrf”, TILE OF(A, k, k), INOUT | AFFINITY);

for( m = k+l; m < total; m+ ) {
parsec _insert_task( "Trsm”,
TILE OF(A, k, k), INPUT,

TILE_OF(A, m, k), INOUT | AFFINITY); Potrf_o

}
for( m = k+l; m < total; m+ ) {
parsec_insert_task( "Herk”,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, m, m), INOUT | AFFINITY);

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemn”,
TILE_OF(A, n, k), INPUT,
TILE_OF(A, m, k), INPUT,
TILE_OF(A, n, m), INOUT | AFFINITY);




Multi-node & Data placement

Data distribution
for( k = 0; k < total; k++ ) { between nodes
(user defined)

parsec_insert_task( "Potrf”, TILE OF(A, k, k), INOUT | AFFINITY);

for( m = k+1; m < total; mt+ ) { 0,0 (lj_ 0,2

parsec_insert_task( "Trsm”, 1.0 1.2
TILE OF(A, k, k), INPUT,

TILE OF(A, m, k), INOUT | AFFINITY); 20 21 272

}
for( m = k+1; m < total; m++ ) {
parsec_insert_task( "Herk”,
TILE OF(A, m, k), INPUT,
TILE OF(A, m, m), INOUT | AFFINITY);

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemm”,
TILE OF(A, n, k), INPUT,
TILE OF(A, m, k), INPUT,
TILE OF(A, n, m), INOUT | AFFINITY);

icL>or




Task affinity follows data placement

Data distribution
for( k = 0; k < total; k++ ) { between nodes

parsec_insert_task( "Potrf”, TILE OF(A, k, k), INOUT | (user deflned)

for( m = k+1; m < total; mt++ ) {
parsec_insert_task( "Trsm”,

TILE OF(A, k, k), INPUT,
TILE OF(A, m, k), INOUT @
}

for( m = k+1; m < total; mt+ ) {
parsec_insert_task( "Herk”,
TILE OF(A, m, k), INPUT,
TILE OF(A, m, m), INOUT

for( n = m+l; n < total; n++ ) {
parsec_insert_task( “Gemm”,
TILE OF(A, n, k), INPUT,
TILE OF(A, m, k), INPUT,
TILE OF(A, n, m), INOUT




DAG building in distributed memory

Data distribution

On a given node, PaRSEC ignores remote between nodes
tasks, except for immediate (user defined)
predecessors and children of local tasks. 00 01 02

1,0 1,2

Noxele 1L

Node O 20 21 22

b DAG
e?r:l:ries for — Complete DAG

remote tasks

0
4\
\ stub DAG

entries for

7 / remote tasks




Implicit message passing

PaRSEC knows which node to exchange data with
(due to the stubs) and does so
without user involvement.

INOCER! | Node O
0 I
v o e
. i — Complete DAG
4 :

TN\

Asynchronous network
data transfers
performed automatically

icL>or




n
et Resilience

automatic error recovery

¢ Afault propagates in the system
according to data dependencies.

¢ If the original data can be recovered,

automatic fault recovery is possible.
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»

" SLATE Features

> Runtime interface
> Use Open-MP
> Be able to plug into other systems
> PaRSEC, Legion, Darma, StarPU, ..
> Statically scheduled on across nodes: dynamically schedule within node

> Tiled Algorithms
> Runtime scheduling based on dataflow

> Runtime dependency tracking
> Plug into the different runtime systems

> Data distribution as in ScaLAPACK

> Given the layout and arrangement of processes communication is understood
> Task based parallelism as in PLASMA

> DAG based to allow overlap of computation and communication

> Ability to use accelerators as in MAGMA
> Hybrid computing using the runtime system



o
“" Today: Integration with DOE ECP Applications

> Underdevelopment and design

» xSDK - Coordination of NLA libraries across DOE

> PEEKS - Iterative methods

> Working with the ECP applications, i.e. Chemistry: diagonalization

> Link seamlessly and work efflcnen*rly when used as LAPACI( and/or'
ScaLAPACK replacement i immmmmmmmmimne |

> European Project
> NLAFET H2020




